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UNIT -1
INTRODUCTION TO DEEP LEARNING

¢ Introduction

¢ Historical Trends in Deep Learning




INTRODUCTION

Problems/Tasks for Human Beings

Intellectually difhcult Easy, feels automatic, solved intuitively
Ex Multiplying two 10-digit numbers @ Ex Understanding / recognizing spoken words
Playing Chess Identifying people faces

Easy for computers
IBM’s Deep Blue chess-playing
system

Difhicult for computers
Less than ability of an average human
beings to recognize objects or speech.

Can be described by a list of formal

s Hard for people to describe formally:

Solutions for these intuitive problems....?




SOLUTIONS FOR THE INTUITIVE PROBLEMS

¢ Allow computers to learn from experience.
¢ Understand the world in terms of hierarchy of concepts.

@ Learn complicated concepts by building them out of simpler ones.




SOLUTION 1I- KNOWLEDGE BASE

[
AL e e ¢

se-abce ne world 1n formal languages.

AYAVYS avalLvvarYaYAa
TAD Y (&

¢ Ex: Cyc is an inference engine and a database of statements in a language called CycL.
¢ Formal Rules to understand world.
¢ Detected an inconsistency.
¢ People do not have electrical parts.
¢ Fred was holding an electric razor.

¢ Failed to understand “FredWhileShaving”.

¢ Is Fred still a person while shaving...?




SOLUTION 2- MACHINE LEARNING

@ Al systems needed the ability to acquire their own knowledge- extract patterns from

raw data - Machine Learning -

¢ Ex 1: Logistic Regression to identify cesarean delivery. If logistic regression is
given MRI scan of the patient instead of doctor’s formalized report, cannot make
useful prediction.

¢ Ex 2 : Naive Bayes to separate legitimate e-mails from spam e-mail.

¢ Speaker Identification - size of speakers vocal tract - man, woman, child
¢ Performance depends on data representation
¢ Each piece of information represented in the data -feature

¢ Challenge - Extracting right set of features




REPRESENTATIONS MATTER

Cartesian coordinates Polar coordinates

Cartesian Coordinates
or
Polar Coordinates |




SOLUTION 3 - REPRESENTATION LEARNING

¢ Let Al systems allow ML algorithms loonily discover representation to output, but also representation itself.

¢ Learned representations - Better performance than hand designed representations
¢ Simple task - minutes , complex task- hours/months
¢ Ex : Autoencoder - Representation learning algorithm
¢ Encoder function -Converts input data into different representation
¢ Decoder Function- Converts new representationbackinto original format
¢ Separate factors of variation
¢ Speech recording analysis - Speaker’s age, sex, accent, words they are speaking
¢ Analyzing car image - position of the car, color, angle and brightness of the sun
¢ Factors of variation affect every single piece of data.

¢ Pixels in an image of a red car might appear black at night.




SOLUTION 4 - DEEP LEARNING

Output
(object identity)

¢ Complex concepts built

out of simpler concepts.
3rd hidden layer

(object parts)
¢ Image of a person is
represented by
combining simpler
concepts - edges,
corners, contours, object
parts.

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

¢ Ex : Multilayer

per C ep tron Visible layer

(input pixels)




SOLUTION 4 - DEEP LEARNING

¢ Function mapping from a set of pixels to an object identity is very complicated.
¢ Complicated mapping is divided into simple mappings.

¢ Visible Layer - input - Contains the variables that are abletoobserve.

¢ Hidden Layers - Extracts abstract features from the image

@ Model determines which concepts are useful for explaining relationships unobserved
data.

@ Networks with greater depth execute more instructions in sequence.




MEASURING THE DEPTH OF MODEL-COMPUTATIONAL GRAPHS

Element
Set

Element

¢ No.of sequential Set
instructions that
must be executed
to evaluate

Logistic
Regression

architecture. Logistic
Length Of the Regression
longest path

from input to
output.




MEASURING THE DEPTH OF MO.

JEL-.

JEEP PROBABILISTIC MO.

ELS

¢ Depth of the graph describing how concepts are related to one another.

¢ Ex :An Al system observing the image of a face with one eye in shadow.

¢ Deep probabilistic models consists of 2 layers - a layer for eyes, layer for

faces.

» Computational graphs includes 2n layers - each concept times.

No single value for the correct depth of an architecture.




Machine Learning

Deep learning Example: and
Shallow
Example: Example:
Example: autoencoders e AI
MIPs Logistic Knowledge

regression bases

Representation learning

Machine learning
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Introduction to
Artificial Neural Networks




Biological Neuron

Cell body
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Artificial Neuron

o Artificial neuron, also called linear threshold unit (LTU), by
McCulloch and Pitts, 1943: with one or more numeric inputs, it
produces a weighted sum of them, applies an activation function, and
outputs the result.

@ Common activation functions: step function and sigmoid function.

| sgn(z)
|
____I__—Q | —
-1 0 |
sgn(z) = Loz 20,
5 - 0, z=<0.

) sigmoid(x)

-------------- 1Ok
0.5
10 -05 0 05 10z
gmoid(z) = ——
SIemolalaxr ) =
; l1+e*

 Other activation functions are tanh and RelLLU
* Perceptrons and Sigmoid Neurons



LTU with step function - Perceptron

@ Below is an LTU with the activation function being the step function.

' Output: h_(x) = step(w'. x)

Step function: step(z)



Activation Functions

Activation function Equation Example 1D Graph

Unit step 0, z<0, Perceptron
(Heaviside) $(z) =405, z=0, variant
1, z> 0,
Sign (Signum) ~1, z<0, Perceptron
Pz) =40, z=0, variant >
1, z> 0,
Linear Adaline, linear t
$(z) =z regression />
Piece-wise linear (1, z2 % Support vector f
1 1 1 1
P) =32+ 5, —5< 1Z < 3 machine ‘ >
L 0’ Z S _59
Logistic (sigmoid) | Logistic f
P(2) = — regrgssnon, e R
Multi-layer NN ‘
Hyperbolic tangent H2) = et — et Multi-layer
)= el + e—2 Neural >
Networks
Rectifier, ReLU Multi-layer A/
(Rectified Linear O(z) = max(0, z) Neural >
Unit) Networks
Rectifier, softplus Multi-layer t i
O(z) = In(1 + €?) Neural
Copyright © Sebastian Raschka 2016 N etworks

(http://sebastianraschka.com)




Perceptron

@ A perceptron, by Rosenblatt in 1957, is composed of two layers of

neurons: an input layer consisting of special passing through neurons
and an output layer of LTU's.

@ The bias neuron is added for the completeness of linearity.
@ Rosenblatt proved that, if training examples are linearly separable, a

perceptron always can be learned to correctly classify all training
examples.

Outputs

Output
\
Lo ! layer
- N\
Bias Neuron v Input
(always outputs 1) ! layer
Input Neuron

(passthrough) %4 ..



Perceptrons

@ For instance, perceptrons can implement logical conjunction,

disjunction and negation.
@ For the following perceptron of one LTU with the step function as the
activation function.
e X A\Xo: Wy =wr =1, 0 =-2
@ X1 VXo. Wi = Wy = ]., 0 =—-0.5
@ TX7. W = —0.6, Wo = 0, 0 = —0.5

y

x1 X2



Perceptrons

Simplified (binary) artificial neuron with weights

n
B eshol
0, Zj=() Ww;Xx; < threshold

* output out put =

n
L Zj=() Ww;x; > threshold




Perceptrons

Simplitied (binary) artificial neuron; add weights

Person : Ashok

Do I snowboard this weekend?

3x1 threshold = 5
x; = 1 (good weather)
W1 — 3
I x 1 @ b GUE x, =1 (a lot of powder)
0

Wy —

g s oy x x3 =0 (driving sucks)
D) wxi=3+1+0=4 3 8
j W3 = 5



Perceptron

Simplified (binary) artificial neuron; add weights

Persona: Shredder

e Do I snowboard this weekend’!
X

Wy — 6

g 5. g xy = 0 (driving sucks)
’. “"3 — l

threshold = 5
x; = 1 (good weather)
Wi — 2

» output

x, =1 (a lot of powder)

1 x0



Introducing Bias

Perceptron needs to take into account the bias

sy 0, wx+b <0
S I, wx+b >0

where b is how easy it is to get the perceptron to fire

Shredder has strong positive bias to go to Whistler
while Ashok Is not as strong



Multi Layer Perceptron

@ However, perceptrons cannot solve some trivial non-linear separable
problems, such as the Exclusive OR classification problem.

@ This is shown by Minsky and Papert in 1969.

@ Turned out stacking multiple perceptrons can solve any non-linear
problems.




Multi Layer Perceptron

o A Multi-Layer Perceptrons (MLP) is composed of one passthrough
input layer, one or more layers of LTU'’s, called hidden layer, and one
final layer of LTUs, called output layer.

@ Again, every layer except the output layer includes a bias neuron and
is fully connected to the next layer.

@ When an MLP has two or more hidden layers, it is called a deep
neural network (DNN).

*, Hidden
! layer

-

\\Input
! layer




Multi Layer Perceptron

« Complex network perceptrons can make subtle decisions.
e QOutput =0 if wx + b less than or equal to O

=1 if wx + b is greater than O



Sigmoid Neuron

small change in any weight (or bias)

causes a small change in the output
w 4+ Aw 1
o(z) = :
l4+e=

> ()utput-’f-A()ut‘i)ut,




Sigmoid Neuron

The more common artificial neuron

output

Instead of [0, 1], now (0...1)

Where output is defined by a(wx + b)



Sigmoid Neuron

Persona: Shreader

Do I snowboard this weekend’?

x; = 1 (good weather)

Wi — 0.3
1 [ x . output
x, =1 (a lot of powder)
?=0(wx+b) w, = 0.6
0 = o0(1x0.3 + 1x0.6 + Ox0.1) xy = 0 (driving sucks)
— 0(().9) W3 — Ol

= (0.7109



Simplified Two Layer ANN

// N Do I snowboard this weekend’!
\\ .xl —_ AI)"()S LS’kller

x, = Shredder

Q /
Q /Q h, — weather

O h, = powder
N
\\ / hy — driving

Input Hidden Output




Simplified Two Layer ANN

h, = 6(1x0.8 + 1x0.6) = 0.80
hy, = 6(1x0.2 + 1x0.9) = 0.75
hy = 6(1x0.7 + 1x0.1) = 0.69




Simplified Two Layer ANN

0.8
/).() 0.2
out = 6(0.2x0.8 + 0.8x0.75 + 0.5x0.69)
(07922029

' =ol1:11D)




Architecture of Artificial Neural Network - Multi Layer Perceptrons

r -
‘ hidden layers

" -

-~ -

NS

’ "
\ \{\gge}'{‘ out Iilj;la} er
input layer ¢ ~é z"”‘ng‘ ‘
o XK K
IR 7%
O \

e Loie
But neurons in MLP are

1@ sigmoid neurons




Architecture of Artificial Neural Network

Feed Forward Neural Network
* Qutput from one layer is fed as input to the next layer.

 Noloops in the network.

8 ) Recurrent network
Recurrent Neural Networks .

 Feedback loops are possible.

hidden layers



Learning Perceptrons

* |dea : Cells that fire together, wire together - Hebb’s Rule/Hebbian Learning

* Perceptron Learning Rule

(next step) _ n (A B )
Wi j Wit %

e W, ;is the connection weight between the i"* input neuron and the j* output neu
ron.

e x,is the i input value of the current training instance.
e y;is the output of the j output neuron for the current training instance.
» y;is the target output of the j" output neuron for the current training instance.

o 7 is the learning rate.

* Perceptron Convergence Theorem - Converge to solution if training instances are linearly
separable.

« Not capable of of solving XOR classification problem. 1% .-

* Do not output class probabilities, instead make predictions based on hard threshold. %, ¢



Learning Perceptrons

Iris data set - Implementation using Scikit Learn
* No. of training instances : 150, No. of columns : 4

* |Input - Petal Length, Petal Width
* Qutput(Target) - Iris Setosa? Binary Classification Problem
* Uses Perceptron class present in Scikit-Learn

® Refer to Jupyter Notebook for implementation details.

2.00

1.75 1

®  Not Iris-Setosa
*  Iris-Setosa

Petal length



Multi Layer Perceptrons

XOR classification problem can be solved by MLP

b
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.
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Multi Layer Perceptrons

Input Layer- passthrough input neurons

and bias neuron . Output

! layer
1or more layers of LTUs - Hidden e ' * )
Layers. Includes bias neurons o *\ Hidden

! layer

Output Layer - 1 final layer of LTUs. No
bias neurons. . Input

! layer

Each layer fully connected to next
layers. Xy X,

Deep Neural Network- 2 or more hidden
layers.



Learning Multi Layer Perceptrons : Error Back Propagation

@ Error backpropagation so far is the most successful learning algorithm
for training MLP’s.

@ Learning Internal Representations by Error Propagation, Rumelhart,
Hinton and Williams, 1986.

@ Idea: we start with a fix network, then update edge weights using
v < v+ Av, where Av is a gradient descent of some error objective
function.

@ Before learning, let's take a look at a few possible activation functions
and their derivatives.

Activation funetians Derivatives

1.2




Learning Multi Layer Perceptrons : Error Back Propagation

@ Now, | explain the error backpropagation algorithm for the following
MLP of d passthrough input neurons, one hidden layer of g LTU's,
and output layer of / LTU's.

@ | will assume activation functions f at the / + g LTU's all are the
sigmoid function.

@ Note the bias neuron is gone from the picture, as now the bias is
embedded in the LTU's activation function y; = (D wix; — 0;).

/




Learning Multi Layer Perceptrons : Error Back Propagation

o So our training set is {(x1,¥y1),-..,(Xm,¥m)}, where x; € R? and
yi € R

@ We want to have an MLP like below to fit this data set; namely, to
compute the /- g+ d - g weights and the / + g biases.

@ To predict on a new example x, we feed it to the input neurons and
collect the outputs. The predicted class could be the y; with the
highest score. |f you want class probabilities, consider softmax.

@ MLP can be used for regression too, when there only is one output
neuron.



Learning Multi Layer Perceptrons : Error Back Propagation

@ | use 6; to mean the bias in the j-th neuron in the output layer, and
v, the bias in the h-th neuron in the hidden layer.

q
o | use Bj = ) wpjb, to mean the input to the j-th neuron in the

h=1
d
output layer, and ap = ) vjpX;.
i=1
e Take a training example (x,y), | use y = (y1,...,y;) to mean the

predicted output, where each y; = f(3; — 0;).

Y1 Y; Y
\ /

R
2
Wk
() .

(2>

T
I
' U,

Output Layer

e

1h

Id



Learning Multi Layer Perceptrons : Error Back Propagation

/
o Error function (objective function): E = 2 Y (9; — y;)%.
j=1

@ This error function is a composition function of many parameters and
it is differentiable, so we can compute the gradient descents to be
used to update the weights and biases.

Y1 Y Y

N
i bq .
N\ 0%

Output Layer



Error Back Propagation Algorithm

Given a training set D = {(x, y)}, and learning rate 7, we want to finalize
the weights and biases in the MLP.

O Initialize all the weights and biases in the MLP using random values
from interval [0, 1];

@ Repeat the following until some stopping criteron:
® For every (x,y) € D, do

€ Calculate y;

@) Calculate gradient descents Awpj and A@; for the neurons in the output layer;
€ Calculate gradient descents Avj, and A~y for the neurons in the hidden layer;
() Update weights wp; and vj,, and biases 6; and ~yj;




Error Back Propagation Algorithm

. OE 8
1 AWh_/ — nawhj B 'v«
e 8 E — 8 E % aIB J ‘ bq Hidden Layer

oe _ 9.2 o0 LR y

q
8,3 L _ ULh/SUih SN UdA
© We know B—ij = by, for we have 3; = hzl Whjbp . ” -

/
© We know gg = y; — y;, for we have E = % Zl(}'7j—)g)2
J:

© We also know gg = f'(B; — 0;) = ¥;(1 — y;), for we know f is sigmoid

O Bullets 3, 4 and 5 together can solve Awy; in bullet 1.
@ Computing A6 is similar.



Error Back Propagation Algorithm ¢ & 4@ -

O Avp =g, b
OE __ OE 0b, O

Q 5y = b, Doy " du

© (Long story short) ol e e I

X1 x; T4

/
Q Avi, = nxiby(1 — bp) 21 wh;gj, where g; = (y; — ¥;)y;(1 — ¥;)
J:

© So we update Awy; and A6, for the output layer first, then Av;, and
A~y for the hidden layer.

O This is why it is called backpropagation.



Training Multi Layer Perceptron
Using High Level API - TE.Learn

 MNIST data set - 28 X 28 pixel grey scale images of handwritten digits

o |nput layer - 28X28=784 input neurons. Pixel intensity represented between
0 and 1. (O-white, 1-black)
» 2 Hidden layers - RelLU activation function
* hidden layer 1 : 300 neurons, hidden layer 2 : 100 neurons
e Qutput layer - 10 neurons (10 digits - 0,1,....,8,9)
o Softmax output layer to output estimated class probabillities.

* Cost function : Cross entropy, Accuracy - 98.1%

® Refer to Jupyter Notebook for implementation



accuracy
tag: eval/accuracy

Training Deep Neural Network
Using TensorFlow’s low level Python API

* MNIST data set - 28 X 28 pixel grey scale images of handwritten digits

* |nput layer - 28X28=784 input neurons. Pixel intensity represented between

L}
0 and 1. (O-white, 1-black) 0 10 20 30 40 50 60 70 80 90 100
I

* 2 Hidden layers - RelLU activation function

* hidden layer 1 : 300 neurons, hidden layer 2 : 100 neurons loss

 Output layer - 10 neurons (10 digits - 0,1,....,8,9) o oo loss
* Logits and Softmax activation functions 02

0.16
» Softmax output layer to output estimated class probabilities. 012 ]

* Uses Mini Batch Gradient Descent
 Cost function : Cross entropy 0-

Refer to Jupyter notebook for implementation-Uses dense() instead of neuron_layer()



Fine Tuning Neural Network Hyperparameters

 Number of hidden layers

 Number of neurons per hidden layer

* Activation functions

* Jo find right set of Hyperparameters, use

* Grid search with cross validation-tiny part of hyper parameter space
unlimited amount of time

e Randomized search

* Oscar tool - implements complex algorithms
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Hyperparameter 1°

Hyperparameter

Randomised Search
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Wednesday, April 28, 2021
Introduction to ANN

UNIT 11

Fine-Tuning Neural Network Hyperparameters (OR) Improving deep

Neural Networks

Various Hyperparameters

Learning Rate (1)

Optimizers
Momentum in Momentum optimizer (f3)
Adam Optimizer (1,2, B3 ,e) Best to update weights than using SGD

Number of neurons in hidden layer

Mini-batch size

Number of hidden layers

Learning Rate Decay

Regularization parameter (4)

Number of epochs

Weight Initialization Logic
- Number of Hidden layers
e MLP with a single hidden layer and enough neurons can model complex functions.

e Deep networks with exponentially fewer neurons can model complex functions with

high parameter efficiency than shallow nets.

e Analogy : To draw a forest using drawing software, you can use copy/paste feature and
create one leaf and copy, paste it to create a branch, then copy, paste branch to create a

tree, then copy, paste tree to create a forest.

Similarly in DNN, lower hidden layers model low level structures (ex. line segments
of various shapes), intermediate hidden layers combine lower level structures to

model intermediate-level structures(ex. squares, circles), highest hidden layers and



Wednesday, April 28, 2021
the output layer combine intermediate structures to model high level structures(ex.

faces)

e Hierarchical architecture helps in fast convergence and also generalizes to new data
sets. Ex. A model is already trained to recognize faces in pictures. Now to recognize
hair styles, reuse the lower layers of the first network .Initialize the weights and biases
of the lower layers in new network with the values of weights and biases of the lower

layers of the first network.

e Start with 1 - 2 hidden layers and this works for many problems. For complex
problems, add up the hidden layers until you get overfitting. Ex. Image classification
and speech recognition tasks require dozens or hundreds of layers(may not be fully

connected). But such networks are rarely trained from scratch.
= Number of neurons per hidden layer

e Input Layer : Type of Input. Ex: 784 input neurons for MNIST hand written digit

classification task

e Output Layer :Type of output. Ex: 10 output neurons for MNIST hand written digit

classification task

e Hidden layers :Pick a model with more layers and more neurons than actually needed

and then use early stopping to prevent from overfitting.

e Analogy : Instead of wasting time to find the correct size stretch pants, use large

stretch pants that will shrink down to the right size.
- Activation Functions
e Type of activation function to use in each layer.

e Hidden layers - ReLU activation function, faster to compute, does not saturate enlarge

input values.
e Output layer -

e Softmax activation function - classification tasks
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e No activation function - Regression tasks

Right setting of this hyper parameters can be done by using

1. Grid Search with cross validation : This approach explores tiny part of hyperparameter space in
reasonable amount of time.

o~ <

]
Hyperparameter 2 -

. . - <

s . |&

- - o . S

Hyperparameter 1°

2. Random sampling and adequate search

(- Hyperparameter 2 — <

Y

Hyperparameter 1 °

3. Implement coarse to fine search process

Coarse to fine

e3 Hyperparameter 2

° ° .
e . * |
ot ° .
] [ ] ° ° .‘
B \
Zle . .
21
g . ® o
= e e o
L[] LJ °
.
° °

4. Oscar tool implements complex algorithms



Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
Training Deep Neural Nets

Bias and Variance

high bias “Just right’ high variance

High bias ====> Underfitting
High Variance =====> Overfitting
Training Set Error
(%) 1 15 15 0.5
Train Dev Set
(Validation Set) 11 16 30 1.0
Error (%)
Remarks High variance High Bias H'.gh B'a.s and Low bla_s and
High variance Low Variance
More data Bigger network
Solution Regiularization Train longer
strategies
Reduce number of
features

Bayes error is the theoretical lowest error possible on a task, there can be no lower
error rate.

Human error is the empirical lowest error that a human can perform
Techniques to improve the way neural networks
learn

1. Better initialization of weights
2. Regularization methods
1. L1 regularization
2. L2 regularization
3. Data augmentation - artificial expansion training data
4. Early stopping
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3. Heuristics to choose good hyper parameters
4. Better cost function - cross entropy

Problems while training a Deep NeuralNets

1. Vanishing & Exploding Gradient Descent Problem

2. Extreme slow training in such a large network

3. Millions of parameters risk in overfitting the training set.
VANISHING/EXPLODING GRADIENT DESCENTS PROBLEM
Gradient is calculated using Backpropagation.

- Gradient of the loss with respect to weights

In a network of n hidden layers, n derivatives will be multiplied together. If the
derivatives are large then the gradient will increase exponentially as we propagate down
the model until they eventually explode, and this is what we call the problem
of exploding gradient. Alternatively, if the derivatives are small then the gradient
will decrease exponentially as we propagate through the model until it eventually
vanishes, and this is the vanishing gradient problem.

Because of this problem, deep neural networks were abandoned in early 2000s.

Vanishing Gradient Problem

Gradients are calculated from back propagation - unstable gradients

Gradients are used to update the weights

As more layers using certain activation functions are added to neural networks,
the gradients of the loss function approaches zero, making the network hard to train.
When n hidden layers use an activation like the sigmoid function, n small derivatives
are multiplied together. Thus, the gradient decreases exponentially as we propagate
down to the initial layers. Sometimes the gradient with respect to weights in earlier

layers of the network becomes really small, like vanishingly small. Hence, vanishing



MORE VIDEOS

gradient.

Derivative of sigmoid ranges from 0 to 0.25
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E = (output - target)?

MORE VIDEOS
Play (k)

Watch the following video
https://www.bing.com/videos/search?
=vanishing+gradient+problem&&view=detail&mid=0BCF23AEFC54B82
68DE40BCF23AEFC54B8268 DE4&&FORM=VRDGAR&ru=%2Fvideos%2
Fsearch%3Fq%3Dvanishing%2Bgradient%2Bproblem%26FORM%3DHDR

SC3

Solutions:

1. Weight Initialization- Xavier and He Initialization
2. Nonsaturating activating functions
3. Batch Normalization

4. Gradient Clipping
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1. Weight Initialization
https://deeplizard.com/learn/video/8krd5qKVw-Q

Random distribution of weights. This random values have a normal distribution
with mean ‘0’ and standard deviation ‘1’.

Impact of this random initialization:
Let there are 250 input nodes with values assigned as ‘1’. Weights are randomly

initialized.
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As number of nodes increase, std deviation takes significantly larger values compared to

1.Variance for each of our random numbers is 1, so the variance of z is the sum of these
250 numbers, is 250. Std deviation of z is 15.811.

With this larger standard deviation, the value of z is significantly larger or smaller

than 1.

. When value of z is passed to the activation function, sigmoid, for example, then most
positive inputs, that are significantly larger than 1 will be mapped to the value 1

and most negative inputs will be mapped to 0. So when SGD updates weights to
influence the activation output,it will barely make smaller change in the output of
activation function.

Thus, the network's ability to learn becomes hindered, and training is stuck running in

this slow and inefficient state.

Xavier / Glorot Initialization
Shrink the variance of the weights, and this will shrink the variance of the weighted

sum.
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' 1
%, I var(weights) = —

1/ 1
weight * ¥V

1 0.74 7

o

For RELU activation function,

2
+n

Normal distribution with mean 0 and standard deviation o = \/ "

inputs outputs

6
+n

Or a uniform distribution between -r and +r, with r = \/ ”

inputs outputs

He Initialization

Table 11-1. Initialization parameters for each type of activation function

Activation function  Uniform distribution [-r, r] Normal distribution

Logistic 3 6 _ 2
ninputs +hn outputs ninputs + noutputs

Hyperbolic tangent r—4 6 —4 2
n inputs +hn outputs "inputs +

r= ﬁ\/ 6 0= ﬁ\/ 2
n 4N n 4N
inputs outputs inputs outputs

By default fully_connected() function uses Xavier initialization with uniform

Moutputs

ReLU (and its variants)

distribution. This can be changed to He initialization by using

variance_scaling_ initializer().
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2. Nonsaturating Activation functions

ReLU(z)=max(0,z)

ReLU activation function is fast to compute and does not saturate for positive values.

But it suffers from the problem of dying ReL.Us during training.

When the weights are updated and the weighted sum of the neurons inputs is negative,
the neuron outputs a ‘0’. In such a case, neurons may not comeback to life as the

gradient of the ReL.U function is ‘0’.
To solve the problem of dying ReL.Us, Leaky ReLU is introduced and is defined as

LeakyReLU(z) = max(az , z) where hyper parameter a = slope of the function when z<o

(how much the function leaks).

o = 0.01 - small leak . Leaky ReLUs never die.

a = 0.2 - huge leak - results in better performance than small leak

Randomized Leaky ReLU - a is random value in given range - acts as a regularizer.

Parametric Leaky ReLU - a learns during training- performs well on large image

datasets, but overfits on smaller datasets.

- - -

yi=0

.l/l a i‘rl

3’)',. = uj,.r),»

- - - - - -

ReLU Leaky ReLU/PReLU Randomized Leaky ReLU
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Exponential Linear Unit, proposed by Djork Arne Clevert outperformed all the ReL.U

variants and reduced the training time .

a(exp (z)-1) if z<0
ELU, () = | P R

ELU activation function (a=1)

Differences of ELU with ReLU

1. ELU takes negative values when z<o.

2. It has non zero gradient when z<o.

3. Function is smooth, even at z=0.

4. Itis slower to compute ,but compensated due to fast convergence rate.
Set activation_fn=tf.nn.elu in fully_connected() method.

3. Batch Normalization
https://deeplizard.com/learn/video/dXB-KQYkzNU

Regular Normalization

r — mean

Z =
std

A typical normalization process consists of scaling numerical data on a scale from zero
to one, and a typical standardization process consists of subtracting the mean of the

dataset from each data point, and then dividing that difference by the data set's
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standard deviation.This forces the standardized data to take on a mean of zero and a

standard deviation of one.

The larger data points in the non-normalized data sets can cause instability in neural
networks because large inputs cascade down through the layers in the network, causing
imbalanced gradients, and which results in exploding gradient problem. Also non
normalized data decreases the training speed.

If one weight is larger than other weights, this causes the corresponding neuron to
output large values and this cascading causes instability.

In Batch normalization, after normalizing the output from the activation function, batch
norm multiplies this normalized output by some arbitrary parameter and then adds
another arbitrary parameter to this resulting product.

Batch Normalization process

Step Expression Description
T — mean ) - .
1 z= “eid Normalize output & from activation function.
s
2 Z2*xg Multiply normalized output z by arbitrary parameter g.
3 (z * g) +b Add arbitrary parameter b to resulting product (z * g).

b, g, mean, std are hyper parameters that are learned for each batch normalized layer.
Advantages:

1.  Reduces vanishing gradient problem.

2.  Less sensitive to weight initialization.

3. Larger learning rates can be used, speeding up the learning process.

4. Improves accuracy and also acts like a regularizer.

But this process adds complexity to the model and makes slower predictions.

Refer to Jupiter notebook for implementation.

4. Gradient Clipping
Gradient clipping solves exploding gradients problem.

10
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Idea : If the gradient gets too large, we rescale it to keep it small.
If [|gll = ¢, then

goc-g/lgll
where c is a threshold (hyperparameter), g is the gradient, and ||g|| is the norm of g.

Since g/l|gll is a unit vector, after rescaling the new g will have norm c. If ||g|| < ¢, then
no rescaling.

TensorFlow Implementation

threshold = 1.0

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

grads_and_vars = optimizer.compute_gradients(loss)

capped_gvs = [(tf.clip_by_value(grad, -threshold, threshold), var)
for grad, var in grads_and_vars]

training_op = optimizer.apply_gradients(capped_gvs)

REUSING PRETRAINED NETWORKS

To speed up training the neural networks, pertained models can be used
during implementation in the following ways

1. Reusing Pretrained Layers

2. Unsupervised Pretraining

3. Pretraining on an auxiliary task

1. Reusing Pretrained Layers
Not a good idea to build a DNN from scratch.

Find an existing DNN which does a similar task and then reuse the lower layers of the

network — transfer learning.

11
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Idea : To build a DNN for taskB, use the lower layers of an existing DNN for a similar

task A. This is called transfer learning.

Ex : Task A - A DNN is already trained to classify pictures into 100 different categories.
Task B - To train a DNN to classify specific types of vehicles.

So reuse parts of first network(TaskA)

Reusing Pretrained layers

4

' Output |
o= r Y *
_ Hidden 5 | Output
[ | .
| Hiddend | Hidden 4 N e
o | _ Reuse | 9
| Hidden3 |—>> [ Hidden3 |
1 T |
 Hidden2 | —> [ Hidden2 |i . _
= = 1 | o - .
[ Hidden1 | —> ([ Hidden1 | i welhts
' _ 1 o, “enSEEes | i iy
Input layer J —_ Input layer ]
Existing DNN New DNN for
for task A similar task B

Transfer learning performs better when the inputs have similar low level features.
Upper hidden layers of the original model are less likely to be useful than the lower

layers.

12
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Find the right number flayers to reuse.

Freeze all the reused hidden layers first and see that Gradient descent does not modify
the weights in these layers. Check the performance.

Try unfreezing 1 or 2 top hidden layers and let back propagation tweak them and check
the performance.

Depending on the amount of trains data, try dropping the top hidden layers and freezing
the layers and check the performance. Iterate this process till performance improves.
Refer to Jupiter notebook for implementation

2. Unsupervised pretraining

If a complex task consists of much unlabeled training data, then perform unsupervised
pretraining, layer by layer, starting with the lowest layer using unsupervised feature
detector algorithm like Restricted Boltzmann Machines(RBM) or auto encoders.

Each layer is trained on the output of previously trained layers. Once all layers are
trained, fine tune the network using supervised learning i.e Backpropagation.
Unsupervised pertaining with Autoencoders or GANs(Generative Adversial Networks) is

preferable for a complex task with plenty of unlabeled training data and when no similar

13
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model is available to reuse.

N

L Output |

[ Hiddon | | Hidden3 |

| Hidden2 | LHlddenZ (2 | Hidden2 |

[
Hidden 1 Hidden 1 ’"-*l Hfdden 1 [3 [ Hidden1 [
A L., AL

[ Input layer J [ Input Iayer]

Unlabeled Labeied
data data
Unsupervised (e.g., autoencoders) Supervised (backprop)

Trainlayer1  Train layer2  Train layer 3 Train output layer
& fine-tune top layers V

=

Input layer I ﬁput layer ]

.Pretraining on an Auxiliary Task

Train first neural network on an auxiliary task for which you can obtain labeled training
data. Reuse the lower layers of this network for the actual task. The first network will
learn feature detectors that are likely to be reusable by second network.

Ex To build a system to recognize faces and if you have smaller labeled data, then collect
random pics from internet and detect whether two different pictures feature the same
person.

For natural language processing (NLP) applications, you can download a corpus of
millions of text documents and automatically generate labeled data from it. For

example, you could randomly mask out some words and train a model to predict what

14
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the missing words are (e.g., it should predict that the missing word in the sentence
“What ____ you saying?” is probably “are” or “were”).

FASTER OPTIMIZERS

Watch the following videos

TuZPu

Faster Optimizers improve the training speed of large deep neural networks.
Popular ones are

« Momentum Optimization

« Nesterov Accelerated Gradient

« Ada Grad

« RMSProp

15
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« Adam Optimization
1.Momentum Optimization
Idea : Imagine a bowling ball rolling down a gentle slope on a smooth surface:It will
start slowly, but will quickly pickup momentum until it reaches terminal velocity.
Momentum algorithm

1. m<« pm+7yVg(0)
2. 0«6-m

Gradient is used as an algorithm.
B hyper parameter called momentum is set between o(high friction) and 1(no
friction).Momentum is set to 0.9.If B is 0.9, terminal velocity is ten times the gradient

times of the learning rate. Momentum optimization is 10 times that of gradient Descent.

Due to the momentum, the optimizer may overshoot a bit, then come back,
overshoot again, and oscillate like this many times before stabilizing at the
minimum.

In Keras,
optimizer = keras.optimizers.SGD(Ir=0.001, momentum=0.9)

2. Nesterov Accelerated Gradient

Proposed by Yurii Nesterov in1983.
Faster than momentum optimization.
Idea : Measure the gradient of the cost function not at the local position 6,but slightly

ahead in the direction of momentum. Control overshooting by looking ahead at 8+m

16
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0 Cost
Az T 1 11

Starting
point "

.............. Regular
momentum update

>61

Figure 11-6. Regular versus Nesterov momentum optimization: the former applies the gradients
computed before the momentum step, while the latter applies the gradients computed after

1. m<«pm+4Vy(0+pm)
2. 0«0-m

In Keras,

optimizer = keras.optimizers.SGD(Ir=0.001, momentum=0.9, nesterov=True)

3. AdaGrad

Idea : Scales down the gradient vector along the steepest dimension. Scale the update
for each weight separately.

1. Update frequently-updated weights less.

2. Keep running sum of previous updates.

17
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3. Divide new updates by factor of previous sum.

1. s«s+VJO)®Vy(0)
2. 0« 0-nVyO)Qys+e

€ is a soothing term to avoid division by zero.

B, (steep dimension)

Grad;ent
Descent

Sunday, May 2, 2021

Cost

(flatter dimension)

>91

AdaGrad algorithm inefficient to train neural networks for simpler tasks like Linear

Regression. But for quadratic problems,algorithm ends up stopping too early before

reaching global optimum.

4. RMSProp

This optimizer accumulates the gradients from the most recent iterations rather than

gradients since the beginning of training.

1. s<pfs+(1-P)VJ(0)® V(0)
2. 0« 0-nVJ0O) Oys+e

18
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It uses exponential decay in the first step. The decay rate, 3, hyperparameter is set to
0.9, which works well.

In Keras,

optimizer = keras.optimizers. RMSprop(Ir=0.001, rho=0.9)

This optimizer works better than Momentum optimizer, Nesterov Accelerated Gradient,
AdaGrad.

5. Adam Optimization

Adam (Adaptive moment estimation) combines Momentum Optimization and
RMSProp. This keeps track of exponentially decaying average of past gradients like
Momentum optimization and average of past squared gradients like RMSProp.
Adam algorithm

1. m<«pm+(1-4,)VJ(0)
2. s<ps+(1-B,)V(6) ® Vy(6)

3 m <« m
: T
l—ﬁl
S
4, S <
T
1—[32

5. 0« 0-mmQs+e¢

Momentum decay hyperparameter 1 is set t00.9.
Scaling decay hyperparameter 2 is set t00.999

€ is set to 10-8

N=0.001

19
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In Keras,
optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_ 2=0.999)
Sparse Models
All these optimization algorithms produce dense models(most parameters are non
zero). To build a fast model at runtime, construct a sparse model.
1. Getrid of the tiny weights by setting them to zero.
2. Apply strong 11 regularization during training, as it pushes the optimizer to zero out
as many weights as possible.
3. Apply dual averaging or Follow the Regularised Leader along with with I1
regularization to generate sparse models.
Learning Rate Scheduling
If the learning rate is set too high, training may diverge. If it is too low, training may
eventually to converge to the optimum but takes a long time. If set slightly too high, it
progresses quickly at first, but sendup dancing around the optimum, never settling
down. Ideal learning rate will learn quickly and converge to good solution.
Instead of having constant learning rate, start with high learning rate and reduce
it once it stops making fast progress. This way , you can a get a good solution faster than

constant learning rate.

20
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n way too high: diverges

— 1 too high: suboptimal

---------- ust right
' = N+ Epoch

Start with a high learning rate then reduce it: perfect!

Figure 11-8. Learning curves for various learning rates n
Following are different learning schedules.

Predetermined piecewise constant learning rate
For example, set the learning rate to 7, = 0.1 at first, then to #, = 0.001 after 50
epochs. Although this solution can work very well, it often requires fiddling
around to figure out the right learning rates and when to use them.

Performance scheduling
Measure the validation error every N steps (just like for early stopping) and
reduce the learning rate by a factor of A when the error stops dropping.

Exponential scheduling
Set the learning rate to a function of the iteration number #: #(f) = 7, 10"". This
works great, but it requires tuning #, and r. The learning rate will drop by a fac-
tor of 10 every r steps.

Power scheduling
Set the learning rate to #(f) = 7, (1 + #/r). The hyperparameter c is typically set
to 1. This is similar to exponential scheduling, but the learning rate drops much
more slowly.

In Keras,

optimizer = keras.optimizers.SGD(Ir=0.001, decay=1e-4)

21
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Since AdaGrad, RMSProp, and Adam optimization automatically reduce the learning
rate during training, it is not necessary to add an extra learning schedule. For other

optimization algorithms, using exponential decay or performance scheduling can
considerably speed up convergence.

AVOIDING OVERFITTING THROUGH REGUIARIZATION

Example: Linear regression (housing prices)

8 8
Size Size Size
—= b + b =0y + 6012+ 022 >0 +0ix + Oo2% + 0323 + 042
v nooow .Y ~ . te _——
U-\M-\{- “‘3‘:\ \:\os \\Us‘( ﬁsl\f 0\;@-9(-(: \—LJ\.\ “.&

Overfitting: If we have too many features the learned hypothesis
may fit the training set very well (/(¢) = Z(ha( 1) —y)? = 0), but fail

to generalize to new examples (predlct prlces on new examples).

22
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Training Deep Neural Nets UNIT -III
Example: Logistic regression

vho(x) = g(6o + 0121 + O222) 9(00 + 0121 + O225 g(6o + 012, +92.’l?% <
: +032% + 0423 N +0323 20 + O4a3x3
< +95‘1171(L'2) o~ +05-'1_"_1_1'_2 + Oy + ... )

N\ . s.\{ﬂ :
u &.’ (X} Owgf‘.

(g = sigmoid function)

Addressing overfitting:

Options:
1. Reduce number of features.
— — Manually select which features to keep.
—>— Model selection algorithm (later in course).

2. Regularization.
- — Keep all the features, but reduce magnitude/values of

parameters 6.
— Works well when we have a lot of features, each of

which contributes a bit to predicting .

23
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Underfitting Just right!

Sunday, May 2, 2021

Training Vs. Test Set Error

Test Set

Optimum Model Complexity

Error

W‘

Model Complexity

Consider a NN which is overfitting on the training data.

/\ hidden layers

input layer {

Over-fitting

If the regularization coefficient is too high, then some of the weight matrices are nearly

equal to zero.

24
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hidden layers

input layer {

Under-fitting

Appropriate-fitting

1. Early Stopping

A problem with training neural networks is in the choice of the number of training

epochs to use.

Too many epochs can lead to overfitting of the training dataset, while too few may result
in an underfit model. Early stopping is a method that allows you to specify an arbitrary
large number of training epochs and stop training once the model performance stops

improving on a hold out validation dataset.

25
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This works well in practice, but it performs better when combined with other
regularization techniques.

2. L1 and L2 Regularization

Cost function = Loss (say, binary cross entropy) + Regularization term

A regression model that uses L1 regularization
technique is called Lasso Regression and model
which uses L2 is called Ridge Regression.

The key difference between these two is the penalty

term.

Due to the addition of this regularization term, the values of weight matrices decrease
because it assumes that a neural network with smaller weight matrices leads to simpler
models. Therefore, it will also reduce overfitting to quite an extent.
L1 Regularization
ion = s

Cost function = Loss + 5= = 3 ||w||

L2 Regularization
. _ e 2
Cost function = Loss + 5= = 3 ||w||

For simple linear models, use 1, regularization to constrain
a neural network’s connection weights.

26
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For a sparse model , use 1; regularization(with many
weights equal to 0).

Here 1s how to apply 1, regularization to a Keras layer’s
connection weights, using a regularization factor of 0.01

layer = keras.layers.Dense(100, activation="elu",
kernel_initializer="he_normal",

kernel_regularizer=keras.regularizers.12(0.01))

similarly for 11 regularizer, use keras.regularizers.11() and for
both 11 and 12 regularizer, use eras.regularizers.11_12().

As same regularizer, same activation function, same initialization strategy is used in all
the respective layers, above code appears repetitively.

So to avoid this, use functors.partial() function

from functools import partial

RegularizedDense = partial(keras.layers.Dense,
activation="elu",
kernel_initializer="he_normal",

kernel_regularizer=keras.regularizers.12(0.01))

model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[28, 28]),
RegularizedDense(300),
RegularizedDense(100),
RegularizedDense(10, activation="softmax",
kernel_initializer="glorot_uniform")

D
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3. Dropout

This is a popular regularization technique which boosts accuracy by 1-2%.

At every training step, each neuron (including input neurons but excluding output
neurons) has a probability p of being temporarily dropped out at this training step and
may be active in the next step. This hyper parameter p is called dropout rate and is set
closer to 20-30% in RNNs and 40-50% in CNNs.

After training neurons aren’t dropped any more.

The following code implements dropout regularization for 3-layer neural network.

28
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If the models overfitting, increase dropout rate.

If the model is underfitting, decrease dropout rate.

Dropout may significantly slowdown the convergence but it will give better results when
tuned properly.

Monte Carlo Dropout

4. Max-Norm Regularization

Max norm regularization constrains clipping each neuron's weight vector after each
training step to ensure that its norm never exceeds some threshold r.

max-norm regularization: for each neuron, it constrains the weights w of the incom-
ing connections such that || w ||, < r, where r is the max-norm hyperparameter and
|| - ||, is the £, norm.

We typically implement this constraint by computing ||w||, after each training step

and clipping w if needed (w « Wﬁ).
2

Reducing r, increases the amount of regularization and reduces overfitting.
It alleviates vanishing/exploding gradients problem.

TensorFlow does not have off the shelf max-norm regularizer.
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threshold = 1.0
clipped_weights = tf.clip_by_norm(weights, clip_norm=threshold, axes=1)
clip_weights = tf.assign(weights, clipped_weights)

You would then apply this operation after each training step, like so:

with tf.Session() as sess:

[...]
for epoch in range(n_epochs):
[...]

for X_batch, y_batch in zip(X_batches, y_batches):
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
clip_weights.eval()

You may wonder how to get access to the weights variable of each layer. For this you
can simply use a variable scope like this:

hidden1 = fully_connected(X, n_hiddenl, scope="hidden1")

with tf.variable_scope("hiddenl", reuse=True):
weightsl = tf.get_variable("weights")

Alternatively, you can use the root variable scope:

hidden1 = fully_connected(X, n_hiddenl, scope="hidden1")
hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")
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L...]

with tf.variable_scope("", default_name="", reuse=True): # root scope
weightsl = tf.get_variable("hidden1/weights")
weights2 = tf.get_variable("hidden2/weights")

If you don’t know what the name of a variable is, you can either use TensorBoard to

find out or simply use the global_variables() function and print out all the variable
names:

for variable in tf.global_variables():
print(variable.name)

Although the preceding solution should work fine, it is a bit messy. A cleaner solution
is to create a max_norm_regularizer() function and use it just like the earlier 11_reg
ularizer() function:

def max_norm_regularizer(threshold, axes=1, name="max_norm",
collection="max_norm"):

def max_norm(weights):
clipped = tf.clip_by_norm(weights, clip_norm=threshold, axes=axes)
clip_weights = tf.assign(weights, clipped, name=name)
tf.add_to_collection(collection, clip_weights)
return None # there is no regularization loss term

return max_norm

This function returns a parametrized max_norm() function that you can use like any
other regularizer:

max_norm_reg = max_norm_regularizer(threshold=1.0)
hidden1l = fully_connected(X, n_hidden1, scope="hidden1",
weights_regularizer=max_norm_reg)

Note that max-norm regularization does not require adding a regularization loss term
to your overall loss function, so the max_norm() function returns None. But you still
need to be able to run the clip_weights operation after each training step, so you
need to be able to get a handle on it. This is why the max_norm() function adds the
clip_weights node to a collection of max-norm clipping operations. You need to
fetch these clipping operations and run them after each training step:

clip_all_weights = tf.get_collection("max_norm"

with tf.Session() as sess:

[...]
for epoch in range(n_epochs):
[...]

for X_batch, y_batch in zip(X_batches, y_batches):
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
sess.run(clip_all_weights)

5. Data Augmentation

Data Augmentation consists of generating new realistic training instances from existing

ones, artificially boosting the size of training set. This reduces overfitting.
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Ex , if you want to classify pictures of mushrooms, you may slightly shift, rotate, resize
every picture in the training set by various amounts and add resulting pictures to the
training set. Thenthe resulting model becomes more tolerant to the size, orientation,

position of mushrooms in the pictures.

Figure 11-10. Generating new training instances from existing ones

It is preferable to generate new training instances on the fly during training so as to
save storage space and network bandwidth.

TensorFlow offers several image manipulation operations like transposing, rotating,
resizing, flipping, cropping, adjusting brightness, contrast, saturation, hue.

Steps involved in training a DNN

1. Randomly seed weights

2. Fetch a batch data
3. Forward pass

4. Compute Cost

5. Backward pass

6. Update weights
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Convolutional Neural Networks

Watch the following video

CONVOLUTION NEURAL NETWORKS
EXPLAINED

1600

26x26x32 N a2 812
13x13x32 11x11x64 5x5x64 3L oy 5 10
= = :-H ) ‘,‘:|:[ T
conv3x3, 64  maxpool2x2 s - -
+ maxpool2x2 4o (1,1)  stride (2,2) >4 dense dense

stride (2, 2)

28x28x1

flatten dense

A V depth
5 Oé’éx’"(* height
X
\ ' \_‘( ~ (00000 ~ —7
i QOOOOV yidth

Convolutional Neural Network(CNN)

Also called Convolutional Networks, are a special kind of neural networks, that has a

known grid like topology.
Ex: 1. Timeseries data —1 D grid with samples at regular time intervals
2. Image data - 2D grid of pixels
This CNN employs a mathematical, specialized kind of linear operation called
convolution. CNNs are neural networks that use convolution operation in place of general
matrix multiplication in at least one of their layers. CNNs emerged from the study of humans
visual cortex. CNNs are successful in visual perception, voice recognition, Natural Language
Processing tasks, etc.
CNNs use three basic ideas.
1. Local receptive field
2.Shared weights
3.Pooling
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Architecture of Visual Cortex

>
A\ >C X

s~ 188880, |

Figure 13-1. Local receptive fields in the visual cortex

Many neurons in the visual cortex have a small local receptive field. Local
receptive fields of five neurons are indicated by five dashed circles. Receptive fields of
different neurons may overlap and together they tile the whole visual field. Some
neurons react to images of only horizontal lines, while others to vertical lines or other
orientations.Some neurons may have larger receptive fields and react to more complex
patterns that are combinations of lower level patterns. So higher level neurons are based

on the outputs of the neighboring lower level neurons.

Why Convolution?

MNIST dataset: 28 x28 pixels (784 pixels)
First layer weights: 784x128 ~ 100K parameters

Typical Image: 256 x 256 (56,000 pixels)
First layer weights: 8M parameters !

Too many parameters, unscalable to real images
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Layers in CNN

Convolutional Layer
ActivationLayer
Pooling Layer

LN

Fully Connected Layer

1. Convolutional Layer
1. Sparse Interactions Q

Q \_—e_

layer 3 layer 4 layer 5
For the hand written digit classification on MNIST dataset,

in a fully connected network ,input layer is represented as 28x28=784 vertical line of
input neurons where as in Convolutional net, it is represented as 28x28 square of
neurons, whose values correspond to pixels intensities. Each neuron in the first hidden
layer will be connected to only a small region of the input neurons. Ex a 5x5 region
corresponding to 25 pixels. Region in the input image is called the local receptive field

for the hidden neurons.
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2. Parameter Sharing

2. Parameter Sharing
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3. Equivariant Representation

flg() =g(f )

Code in
Description
SUBSCRIBE|

Convolutional layers are the major building blocks used in convolutional neural

networks.

Convolution Operation

Convolution is an operation on two functions of real valued arguments.

Ex Suppose we are tracking the location of a spaceship with laser sensor. x(t) is the
output of the laser sensor which specifies the position of spaceship at time t. Suppose
the laser sensor is noisy. To get less noisy estimate space ship position , we

average .together several measurements. Let w(a) be weighing function with a as the age
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of measurement.

s(t) = /x(a)w(t —a)da

This operation is called convolution. The convolution operation is
denoted with an asterisk:

s(t) = (z x w)(t)

The first argument, x is called input and the second argument, w is called the kernel

filter. The output is called feature map

o|lolo]o|o]|o]|o
o|l1(o]of|o]|1]o0 " - . o|l1|o|lo0o]o
o|lolo]o|o]|o]|o || S| ||
ofofoJ1]ofo]o ® 1 0 0 — |Sai elee
o|l1(oJofo]|1]o 1|4a]2(1
olof1]1|1]0]0 o - 3
o|lolo|J]o|o]|o]|o

Input Image Feature Detector Feature Map

A convolution is the simple application of a filter to an input that results in an
activation. Repeated application of the same filter to an input results in a map of

activations called a feature map, indicating the locations and strength of a detected
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feature in an input, such as an image.

input neurons

00000 hidden neuron
00000 e

o -ao=
00000"

Each connection learns a weight and the hidden neuron learns overall bias. Each

hidden neuron is trying to analyze its own local receptive field.

input neurons

first hidden layer

Then we slide the local receptive field over by one pixel to the right (i.e., by one neuron), to
connect to a second hidden neuron:

input neurons
Q000Qu~ first hidden layer
00000~ —————0
00000

Slide the local receptive field across the entire image.
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Convolutional
layer 2

Convolutional
layer 1

Input layer

Figure 13-2. CNN layers with rectangular local receptive fields

A neuron located in row i, column j of a given layer is connected to the outputs of the
neurons in the previous layer located in rows i to i + f, - 1, columns jtoj + f, - 1,
where f, and f, are the height and width of the receptive field (see Figure 13-3). In
order for a layer to have the same height and width as the previous layer, it is com-
mon to add zeros around the inputs, as shown in the diagram. This is called zero pad-
ding.

el ey q
V=T AT e e = 4
[ A e i e =i
== —of VA /4

f=3 / _
bl -
f=3 Zero padding

Figure 13-3. Connections between layers and zero padding

The distance between two consecutive receptive fields is called the stride.

neuron located in row i, column jin the upper layer is connected to the outputs of the
neurons in the previous layer located in rows i x s, to i X s, + f, — 1, columns j X s,, +
f.,— 1, where s, and s, are the vertical and horizontal strides.
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Convolutional

Feature : Q layer 2
Map 1 &

Map 2~ g
by VP % |
Filters

Convolutional

: et

[ Mep1 S layer 1
N RS

A Ver2] '

Input layer

Channels

Red
Green

Equation 13-1. Computing the output of a neuron in a convolutional layer

fh fw fn’ /=u.s +f -1
b ith Rk
Zijk = Okt X X yzz:lxi’,j’,k"wu,v,k’,k wit

u=1v=1 j=v.s,+f,-1

e z, ; is the output of the neuron located in row i, column j in feature map k of the
convolutional layer (layer I).

o As explained earlier, s, and s,, are the vertical and horizontal strides, f, and f,, are
the height and width of the receptive field, and f,, is the number of feature maps
in the previous layer (layer I - 1).

* X; ; v is the output of the neuron located in layer I - 1, row i/, column f/, feature
map k’ (or channel ¥ if the previous layer is the input layer).

o b, is the bias term for feature map k (in layer /). You can think of it as a knob that
tweaks the overall brightness of the feature map k.

o W, , v i is the connection weight between any neuron in feature map k of the layer
[ and its input located at row u, column v (relative to the neuron’s receptive field),
and feature map k’.

If the hidden neuron has a bias and a 5x5 weights connected to its local receptive field,

then the output of j, k-th hidden neuron is
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where o is the neural activation function, b is the shared value for the bias and

ax,y is the input activation at position x, y.

All the neurons in the first hidden layer detect exactly the same feature just at different

locations in the input image. Weights and bias of a hidden neuron such that they pickup

vertical edge. Map from the input layer to the hidden layer is called feature map.

Weights and bias defining the feature map is called shared weights and biases. Shared

weights and biases is called filter or kernel. Big advantage with sharing weights and

biases is that it greatly reduces the number of parameters involved in a convolutional

network.

Convolutional layer consists of several different feature maps.

Feature
Map 1

Vertical filter l'
Input

-
aﬂﬁ*

)

Feature
Map 2

= Horizontal filter

AR

R pe———

|

Figure 13-5. Applying two different filters to get two feature maps
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Stacking multiple feature maps
With in one feature map, all neurons share same weights and bias term, but different

feature maps may share different parameters.

TensorFlow Implementation
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import numpy as np
from sklearn.datasets import load_sample_images

# Load sample images
dataset = np.array(load_sample_images().images, dtype=np.float32)
batch_size, height, width, channels = dataset.shape

# Create 2 filters

filters_test = np.zeros(shape=(7, 7, channels, 2), dtype=np.float32)
filters_test[:, 3, :, 0] = 1 # vertical line

filters_test[3, :, :, 1] = 1 # horizontal line

# Create a graph with input X plus a convolutional layer applying the 2 filters
X = tf.placeholder(tf.float32, shape=(None, height, width, channels))
convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], padding="SAME")

with tf.Session() as sess:
output = sess.run(convolution, feed_dict={X: dataset})

plt.imshow(output[0, :, :, 1]) # plot 1st image's 2nd feature map
plt.show()

éadding="VALID"
(i.e., without padding)

\ Ignored

padding="SAME"
(i.e., with zero padding)

| |

la | 00

Figure 13-7. Padding options—input width: 13, filter width: 6, stride: 5

12
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Memory Requirements

For example, consider a convolutional layer with 5 x 5 filters, outputting 200 feature
maps of size 150 x 100, with stride 1 and SAME padding. If the input is a 150 x 100
RGB image (three channels), then the number of parameters is (5 x 5 x 3 + 1) x 200
= 15,200 (the +1 corresponds to the bias terms), which is fairly small compared to a
fully connected layer.” However, each of the 200 feature maps contains 150 x 100 neu-
rons, and each of these neurons needs to compute a weighted sum of its 5 x 5 x 3 =
75 inputs: that’s a total of 225 million float multiplications. Not as bad as a fully con-

nected layer, but still quite computationally intensive. Moreover, if the feature maps
are represented using 32-bit floats, then the convolutional layer’s output will occupy
200 x 150 x 100 x 32 = 96 million bits (about 11.4 MB) of RAM.® And thats just for
one instance! If a training batch contains 100 instances, then this layer will use up
over 1 GB of RAM!

2. Activation Layer
Only non linear activation functions are used for learning.

A1*(A2*X) = (A1*A2)*X = A*X

reLLU/Leaky reL.U can be used as activation function.
Leaky reLLU solves dying reLL.U problem.
reLU(MaxPool(Conv(M))) = MaxPool(reLU(Conv(M)))

3. Pooling Layer

Down sampling features to reduce computational load, memory usage and number of
parameters.
Two hyper parameters
1. Dimension of spatial extent
2. Stride
Pooling layer has no weights. But it uses an aggregation function of max or mean.

A common pooling layer uses 2x2 maxpool filter with stride 2.
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Depth remains the same after pooling layer. Pooling reduces the chance of overfitting as

there are less parameters.

For the MNIST dataset, after the convolutional layer

Max Pooling
2x2
>
stide 2
26 %26 x 32 3x13x32

Number of features are reduced to 25% of the original number.
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TensorFlow implementation of pooling layer with a 2x2 kernel, stride of 2 and no
padding.

[...] # load the image dataset, just like above

# Create a graph with input X plus a max pooling layer

X = tf.placeholder(tf.float32, shape=(None, height, width, channels))

max_pool = tf.nn.max_pool(X, ksize=[1,2,2,1], strides=[1,2,2,1],padding="VALID")

with tf.Session() as sess:
output = sess.run(max_pool, feed_dict={X: dataset})

plt.imshow(output[0].astype(np.uint8)) # plot the output for the 1st image
plt.show()

ksize argument represents batch size , height, width, channels.

4. Fully Connected Layer

This layer is used to learn non-linear combination of features while convolutional layer
provides meaningful, low-dimensional, invariant feature space.

Pooling output is a 3D feature map

FC input is a 1D feature vector.

This conversion is done through flattening.

1 Flatten

13x13x32 “‘“’“"

15 Dr.D.Kavitha



Convolutional Neural Networks

CNN for MNIST dataset to recognize hand written digits

1600

28x28x1

N
A
&

conv3x3, 32
stride (1, 1)

16

26x26x32

13x13x32

maxpool2x2

stride (2, 2)

UNIT IV

11x11x64 5x5x64

—F—F—

conv3x3, 64
stride (1, 1)

maxpool2x2
stride (2, 2)
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flatten

dense

1-d convolution with

filters: 2
filter size: 2
stride: 2
padding: 1
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Convolutional Neural Networks

NXN

Cony 1:

Edge+Blob

Cony 3: Texture

Nwmericnl Datndrinen

.7 “

Conv 5: Object Parts

hitp:/vision03 . csail. mit.edwonn_art/data/single_layer png

’ Vehicle

Fel: ()h]«l Classes
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1-D convolution

Input 1-d convolution with Input
» filters: 1 O Hidden

idd
OW:HG . / « filter size: 2
. » stride: 2 O
QO

1-d convolution with

» filters: 1 /

« filter size: 2 W
. 2
» stride: 1

https://www.coursera.org/lecture/intro-practical-deep-learning/convolutional-neural-networks-
iOxAv

CNN Architectures

Typical CNN architectures stack a few convolutional layers followed by a pooling layer, again

convolution layers and then pooling layer and so on. Image gets smaller and smaller as it
progresses through the network but it gets deeper and deeper with more feature maps.Top of
the stack is a regular feed forward neural network in which the output layer is usually a softmax

layer that outputs class probabilities.

2
3
4 -

Input Convolution Pooling Convolution Pooling Fully connected

Figure 13-9. Typical CNN architecture

1. LeNet-5
2. AlexNet
3.GooglLeNet
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4. ResNet

LeNet-5

Created by Yann LeCun in 1998.
Used for hand written digit recognition(MNIST dataset)

19

Table 13-1. LeNet-5 architecture

Fully Connected -

Fully Connected -

Layer Type

Out

F6

(6 Convolution
$4 Avg Pooling
(€] Convolution
\Y Avg Pooling
(1 Convolution
In Input

UNIT IV

Maps Size

10

84
120 1x1
16 5%x5
16 10x10
6 14 X 14
6 28 x 28
1 32x 32

Saturday, May 15, 2021

Kernel size Stride Activation

5%5
2x2
5%5
2X2
5%5

_— N e ND e

RBF
tanh
tanh
tanh
tanh
tanh
tanh

o MNIST images are 28 x 28 pixels, but they are zero-padded to 32 x 32 pixels and
normalized before being fed to the network. The rest of the network does not use
any padding, which is why the size keeps shrinking as the image progresses

through the network.

The average pooling layers are slightly more complex than usual: each neuron
computes the mean of its inputs, then multiplies the result by a learnable coeffi-
cient (one per map) and adds a learnable bias term (again, one per map), then
finally applies the activation function.

« Most neurons in C3 maps are connected to neurons in only three or four S2

maps (instead of all six S2 maps). See table 1 in the original paper for details.

« The output layer is a bit special: instead of computing the dot product of the
inputs and the weight vector, each neuron outputs the square of the Euclidian
distance between its input vector and its weight vector. Each output measures
how much the image belongs to a particular digit class. The cross entropy cost
function is now preferred, as it penalizes bad predictions much more, producing

larger gradients and thus converging faster.
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AlexNet

AlexNet CNN architecture won 2012 ILSVRC challenge

ILSVRC-ImageNet Large Scale Visual Recognition Challenge

ImageNet is a dataset of over 15 million labeled high-resolution images belonging to
roughly 22,000 categories. Achieved 17% top-5 error rate.

Developed Alex Krizhevsky.

It was the first to stack convolutional layers directly on one another instead of pooling layer on
top of each convolutional layer.

Table 13-2. AlexNet architecture

Layer Type Maps  Size Kernel size Stride Padding Activation
Out  Fully Connected - 1,000 - - - Softmax
F9 Fully Connected - 4,096 - - - ReLU

F8 Fully Connected - 4,096 - - - ReLU

V) Convolution 256 1Bx13  3x3 1 SAME ReLU

(6 Convolution 384 13x13  3x3 1 SAME RelU

&) Convolution 384 13x13  3x3 1 SAME RelLU

$4 Max Pooling 256 1B3x13  3x3 2 VALD -

G Convolution 256 27x21  5X5 1 SAME RelU

\Y) Max Pooling 96 27%x2] 3X3 2 VALD -

a Convolution 96 55x55  1TxMN 4 SAME RelU

In Input 3(RGB) 224x 224 - - - _

Two regularization techniques are used to reduce overfitting.

1. Dropout with 50% dropout rate to the output of layers F8 and F9
2. Data Augmentation

It used Local Response Normalization.
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Equation 13-2. Local response normalization

. _ . . ., r
Ihigh A Jhigh = min (l+§’fn_1)
bj=ajk+a f a; with

J= jlow

Jiow = max (0,i - 7)

o b, is the normalized output of the neuron located in feature map i, at some row u
and column v (note that in this equation we consider only neurons located at this
row and column, so u and v are not shown).

« a;is the activation of that neuron after the ReLU step, but before normalization.

o k, a, B, and r are hyperparameters. k is called the bias, and r is called the depth
radius.

o f,is the number of feature maps.

GooglLeNet

Developed by Christian Szegedy.
ILSVRC 2014 classification winner
6.7% top5 error

Efficient Inception Module

12x less parameters thanAlexNet

Architecture of an Inception Module

$

| N\

-
Inception Depth
module Concat

Convolution Convolution Convolution Convolution

1x1 + 1(S) 3x3 + 1(S) 5x5 + 1(S) 1x1 + 1(S)
Convolution Convolution Max Pool
1x1 + 1(S) 1x1 + 1(S) 3x3+1(S)

Figure 13-10. Inception module

21

Dr.D.Kavitha



Convolutional Neural Networks UNIT IV Saturday, May 15, 2021
Notation 3x3 + 1(S) means that the layer uses 3x3 filter and a stride of 1.with the SAME
padding.

Different kernel sizes (1x1,3x3,5x5) are used in second convolutional layer allows to capture
patterns at different scales.

As all the convolutional and maxpool layers uses a stride of 1, the outputs can be

concatenated along the depth dimension in the final depth concat layer.

Can be implemented using concat() functioning TensorFlow.

$
Softmax
Max Pool 112 288 64 64 Fully Connected
192,3x3+2(S) | | b 144 32 1000 units
Local Response 128 256 64 64 Dropout
Norm < 128 24 40%
Convolution 160 224 64 64 Avg Pool
192, 3x3 + 1(S) b 112 24 1024, 7%7 + 1(V)
Convolution - 192 208 48 64 384 384 128 128
64, 1x1 + 1(S) <> 96 16 b 192 48
Local Response Max Pool 256 320 128 128
Norm 480, 3x3 + 2(S) 160 32
Max Pool 128 192 96 64 Max Pool
64, 3x3 + 2(S) 128 32 832, 3x3 + 2(S)
Convolution 64 128 32 32 256 320 128 128
64, 7x7 + 2(S) 96 16 160 32
| Input f f
f b = inception module

Figure 13-11. GoogLeNet architecture
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o The first two layers divide the image’s height and width by 4 (so its area is divided
by 16), to reduce the computational load.

 Then the local response normalization layer ensures that the previous layers learn
a wide variety of features (as discussed earlier).

« Two convolutional layers follow, where the first acts like a bottleneck layer. As
explained earlier, you can think of this pair as a single smarter convolutional
layer.

« Again, alocal response normalization layer ensures that the previous layers cap-
ture a wide variety of patterns.

 Next a max pooling layer reduces the image height and width by 2, again to speed
up computations.

o Then comes the tall stack of nine i'nception modules, interleaved with a couple
max pooling layers to reduce dimensionality and speed up the net.

« Next, the average pooling layer uses a kernel the size of the feature maps with
VALID padding, outputting 1 x 1 feature maps: this surprising strategy is called
global average pooling. It effectively forces the previous layers to produce feature
maps that are actually confidence maps for each target class (since other kinds of
features would be destroyed by the averaging step). This makes it unnecessary to
have several fully connected layers at the top of the CNN (like in AlexNet), con-
siderably reducing the number of parameters in the network and limiting the risk
of overfitting.

o The last layers are self-explanatory: dropout for regularization, then a fully con-
nected layer with a softmax activation function to output estimated class proba-
bilities.
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ResNet
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

/ “Revolution of Depth”

ResNet AlexNet

Very deep network using residual connections
152 layer model for ImageNet

ILSVRC 2015 challenge winner

3.57% top 5 error

152 layers
A
R lavers 19 layers I I

3.57 l 8 layers 8 layers
e -

ILSVRC'15 C'14 ILSVRCM ILSVRC'13  ILSVRC'12

shallow

ILSVRC'11  ILSVRC'10

Introduces skip connections and performs heavy batch normalization.

Idea : Deeper network may be made from a shallow network by copying weights from shallow

network and setting other layers in the deeper network to be identity mapping.
This formulation indicates that deeper model should not produce higher training error than the

shallow counterpart.

h(x)

h(x)
4 =

c
Layer 2 % Layer 2
Q
4 h(x) g 4 f(x) = h(x) - x
Layer 1 1 Layer 1
- | %)
¢ e,
Input Input
Figure 13-12. Residual learning
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x Layer close to Tl Re§idual
its initial state Units

1

layers that output close
X = to zero and block
backpropagation

Figure 13-13. Regular deep neural network (left) and deep residual network (right)

Softmax ',’, Convolution
/| 128,3x3 + 1(S)
Fully Connected Convolution
1000 units 128, 3%3 + 1(S) 4
Avg Pool Convolution
1024, 7x7 +1(v) |,/ | 128,3x3 +1(S) _ Fell)
| \ [ Convolution skip Batch
E— Deep! — *J 128,3x3 +2(S) RS Norm
M??:g'f‘f’(g) 64,33+1(S) | BN+
Max Pool \ Convolution Convolution RelU
64, 3x3 + 2(S) | 64, 3x3 + 1(S) 64, 3x3 + 1(S)
Convolution ) Convolution A
64, 7x7 + 2(S) 64, 3x3 + 1(S) Residual Unit
\ Convolution
ki '\ 64,3%3+1(S

Figure 13-14. ResNet architecture
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BN

RelLU
+

1

Convolution
128, 3x3 + 1(S)

Convolution Convolution
128, 1x1 + 2(S) 128, 3x3 + 2(S)

——

BN

BN +
RelLU

Figure 13-15. Skip connection when changing feature map size and depth

https://towardsdatascience.com/review-hikvision-1st-runner-up-in-ilsvrc-2016-object-

detection-1f0a42cda767
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