
COURSE : DEEP LEARNING

UNIT : I

TOPIC : INTRODUCTION TO DEEP LEARNING
DR.D.Kavitha

UNIT - I

INTRODUCTION TO DEEP LEARNING

Introduction

Historical Trends in Deep Learning

INTRODUCTION
Problems/Tasks for Human Beings

 Intellectually difficult

Ex Multiplying two 10-digit numbers

 Playing Chess

Easy, feels automatic, solved intuitively

Ex Understanding / recognizing spoken words

Identifying people faces
Easy for computers

IBM’s Deep Blue chess-playing

 system

Difficult for computers

Less than ability of an average human

 beings to recognize objects or speech.
Can be described by a list of formal

mathematical rules. Hard for people to describe formally.

Solutions for these intuitive problems….?

SOLUTIONS FOR THE INTUITIVE PROBLEMS

Allow computers to learn from experience.

Understand the world in terms of hierarchy of concepts.

Learn complicated concepts by building them out of simpler ones.

 -
AI projects hard code knowledge about the world in formal languages.

Ex: Cyc is an inference engine and a database of statements in a language called CycL.

Formal Rules to understand world.

Detected an inconsistency.

People do not have electrical parts.

Fred was holding an electric razor.

 Failed to understand “FredWhileShaving”.

Is Fred still a person while shaving…?

SOLUTION 1- KNOWLEDGE BASE

SOLUTION 2- MACHINE LEARNING
AI systems needed the ability to acquire their own knowledge- extract patterns from
raw data - Machine Learning -

Ex 1: Logistic Regression to identify cesarean delivery. If logistic regression is
given MRI scan of the patient instead of doctor’s formalized report, cannot make
useful prediction.

Ex 2 : Naive Bayes to separate legitimate e-mails from spam e-mail.

Speaker Identification - size of speakers vocal tract - man, woman, child

Performance depends on data representation

Each piece of information represented in the data -feature

Challenge - Extracting right set of features

REPRESENTATIONS MATTER

Cartesian Coordinates

or

Polar Coordinates

SOLUTION 3 - REPRESENTATION LEARNING
Let AI systems allow ML algorithms loonily discover representation to output, but also representation itself.

Learned representations - Better performance than hand designed representations

Simple task - minutes , complex task- hours/months

Ex : Autoencoder - Representation learning algorithm

Encoder function -Converts input data into different representation

Decoder Function- Converts new representationbackinto original format

Separate factors of variation

Speech recording analysis - Speaker’s age, sex, accent, words they are speaking

Analyzing car image - position of the car, color, angle and brightness of the sun

Factors of variation affect every single piece of data.

Pixels in an image of a red car might appear black at night.

SOLUTION 4 - DEEP LEARNING

Complex concepts built
out of simpler concepts.

Image of a person is
represented by
combining simpler
concepts - edges,
corners, contours, object
parts.

Ex : Multilayer
perceptron

SOLUTION 4 - DEEP LEARNING
Function mapping from a set of pixels to an object identity is very complicated.

Complicated mapping is divided into simple mappings.

Visible Layer - input - Contains the variables that are abletoobserve.

Hidden Layers - Extracts abstract features from the image

Model determines which concepts are useful for explaining relationships unobserved
data.

Networks with greater depth execute more instructions in sequence.

MEASURING THE DEPTH OF MODEL-COMPUTATIONAL GRAPHS

No.of sequential
instructions that
must be executed
to evaluate
architecture.
Length of the
longest path
from input to
output.

Depth of the graph describing how concepts are related to one another.

Ex :An AI system observing the image of a face with one eye in shadow.

Deep probabilistic models consists of 2 layers - a layer for eyes, layer for
faces.

Computational graphs includes 2n layers - each concept times.

No single value for the correct depth of an architecture.

MEASURING THE DEPTH OF MODEL-DEEP PROBABILISTIC MODELS

Machine Learning

and

AI

Kavitha

Introduction to
Artificial Neural Networks
UNIT - II

Biological Neuron

Artificial Neuron

• Other activation functions are tanh and ReLU

• Perceptrons and Sigmoid Neurons

LTU with step function - Perceptron

Activation Functions

Perceptron

Perceptrons

Perceptrons

Perceptrons

Person : Ashok

Perceptron

Introducing Bias

Shredder has strong positive bias to go to Whistler

 while Ashok is not as strong

Multi Layer Perceptron

Multi Layer Perceptron

Multi Layer Perceptron
• Complex network perceptrons can make subtle decisions.

• Output = 0 if wx + b less than or equal to 0

 = 1 if wx + b is greater than 0

Sigmoid Neuron

Sigmoid Neuron

Sigmoid Neuron

Simplified Two Layer ANN

Simplified Two Layer ANN

Simplified Two Layer ANN

Architecture of Artificial Neural Network - Multi Layer Perceptrons

• But neurons

But neurons in MLP are

sigmoid neurons

Architecture of Artificial Neural Network
Feed Forward Neural Network
• Output from one layer is fed as input to the next layer.

• Noloops in the network.

Recurrent Neural Networks

• Feedback loops are possible.

Learning Perceptrons
• Idea : Cells that fire together, wire together - Hebb’s Rule/Hebbian Learning

• Perceptron Learning Rule

• Perceptron Convergence Theorem - Converge to solution if training instances are linearly
separable.

• Not capable of of solving XOR classification problem.

• Do not output class probabilities, instead make predictions based on hard threshold.

Learning Perceptrons
Iris data set - Implementation using Scikit Learn
• No. of training instances : 150, No. of columns : 4

• Input - Petal Length, Petal Width

• Output(Target) - Iris Setosa? Binary Classification Problem

• Uses Perceptron class present in Scikit-Learn

• Refer to Jupyter Notebook for implementation details.

Multi Layer Perceptrons
XOR classification problem can be solved by MLP

Multi Layer Perceptrons
• Input Layer- passthrough input neurons

and bias neuron

• 1or more layers of LTUs - Hidden
Layers. Includes bias neurons

• Output Layer - 1 final layer of LTUs. No
bias neurons.

• Each layer fully connected to next
layers.

• Deep Neural Network- 2 or more hidden
layers.

Learning Multi Layer Perceptrons : Error Back Propagation

Learning Multi Layer Perceptrons : Error Back Propagation

Learning Multi Layer Perceptrons : Error Back Propagation

Learning Multi Layer Perceptrons : Error Back Propagation

Learning Multi Layer Perceptrons : Error Back Propagation

Error Back Propagation Algorithm

Error Back Propagation Algorithm

Error Back Propagation Algorithm

Training Multi Layer Perceptron
Using High Level API - TF.Learn
• MNIST data set - 28 X 28 pixel grey scale images of handwritten digits

• Input layer - 28X28=784 input neurons. Pixel intensity represented between

 0 and 1. (0-white, 1-black)

• 2 Hidden layers - ReLU activation function

• hidden layer 1 : 300 neurons, hidden layer 2 : 100 neurons

• Output layer - 10 neurons (10 digits - 0,1,….,8,9)

• Softmax output layer to output estimated class probabilities.

• Cost function : Cross entropy, Accuracy - 98.1%

• Refer to Jupyter Notebook for implementation

Training Deep Neural Network
Using TensorFlow’s low level Python API

• MNIST data set - 28 X 28 pixel grey scale images of handwritten digits

• Input layer - 28X28=784 input neurons. Pixel intensity represented between

 0 and 1. (0-white, 1-black)

• 2 Hidden layers - ReLU activation function

• hidden layer 1 : 300 neurons, hidden layer 2 : 100 neurons

• Output layer - 10 neurons (10 digits - 0,1,….,8,9)

• Logits and Softmax activation functions

• Softmax output layer to output estimated class probabilities.

• Uses Mini Batch Gradient Descent

• Cost function : Cross entropy

Refer to Jupyter notebook for implementation-Uses dense() instead of neuron_layer()

Fine Tuning Neural Network Hyperparameters
• Number of hidden layers

• Number of neurons per hidden layer

• Activation functions

• To find right set of Hyperparameters, use

• Grid search with cross validation-tiny part of hyper parameter space
unlimited amount of time

• Randomized search

• Oscar tool - implements complex algorithms

Right Setting of Hyperparameters
Grid Search Randomised Search Coarse to fine

Wednesday, April 28, 2021

Introduction	to	ANN	

UNIT	II

Fine-Tuning	Neural	Network	Hyperparameters	(OR)	Improving	deep	

Neural	Networks

Various	Hyperparameters

	 Learning	Rate	(η)

	 Optimizers

	 	 Momentum	in	Momentum	optimizer	(β)

	 	 Adam	Optimizer	(β1,β2,	β3	,ϵ)		Best	to	update	weights	than	using	SGD

	 Number	of	neurons	in	hidden	layer

	 Mini-batch	size

	 Number	of	hidden	layers

	 Learning	Rate	Decay

	 Regularization	parameter	(ƛ)

	 Number	of	epochs

	 Weight	Initialization	Logic

- Number	of	Hidden	layers

• MLP	with	a	single	hidden	layer	and	enough	neurons	can	model	complex	functions.

• Deep	networks		with	exponentially	fewer	neurons	can	model	complex	functions	with	
high	parameter	efficiency	than	shallow	nets.

• Analogy	:	To	draw	a	forest	using	drawing	software,	you	can	use	copy/paste	feature	and	
create	one	leaf	and	copy,	paste	it	to	create	a	branch,	then	copy,	paste	branch	to	create	a	

tree,	then	copy,	paste	tree	to	create	a	forest.	

Similarly	in	DNN,	lower	hidden	layers	model	low	level	structures	(ex.	line		segments	

of	various	shapes),	intermediate	hidden	layers	combine	lower	level	structures	to	

model	intermediate-level	structures(ex.	squares,	circles),	highest	hidden	layers	and	

1

Wednesday, April 28, 2021
the	output	layer	combine	intermediate	structures	to	model	high	level	structures(ex.	

faces)

• Hierarchical	architecture	helps	in	fast	convergence	and	also	generalizes	to	new	data	
sets.	Ex.	A	model	is	already	trained	to		recognize		faces	in	pictures.	Now	to	recognize	

hair	styles,	reuse	the	lower	layers	of	the	first	network	.Initialize	the	weights		and	biases	

of	the	lower	layers	in	new	network	with	the	values	of	weights	and	biases	of	the	lower	

layers	of	the	first	network.

• Start	with	1	-	2	hidden	layers	and	this	works	for	many	problems.	For	complex	
problems,	add	up	the	hidden	layers	until	you	get	overfitting.	Ex.	Image	classification	

and	speech	recognition	tasks	require	dozens	or	hundreds	of	layers(may	not	be	fully	

connected).	But	such	networks	are	rarely	trained	from	scratch.

- Number	of	neurons	per	hidden	layer

• Input	Layer	:		Type	of	Input.	Ex:	784	input	neurons	for	MNIST	hand	written	digit	
classification	task

• Output	Layer	:Type	of	output.	Ex:	10	output	neurons	for	MNIST	hand	written	digit	
classification	task

• Hidden	layers	:Pick	a	model	with	more	layers	and	more	neurons	than	actually	needed	
and	then	use	early	stopping	to	prevent	from	overfitting.

• Analogy	:	Instead	of	wasting	time	to	find	the	correct	size	stretch	pants,	use	large	
stretch	pants	that	will	shrink	down	to	the	right	size.

- Activation	Functions

• Type	of	activation	function	to	use	in	each	layer.

• Hidden	layers	-	ReLU	activation	function,	faster	to	compute,	does	not	saturate	enlarge	
input	values.

• Output	layer	-	

• Softmax	activation	function	-	classification	tasks

2

Wednesday, April 28, 2021
• No	activation	function	-	Regression	tasks

Right	setting	of	this	hyper	parameters	can	be	done	by	using

1. Grid	Search	with	cross	validation	:	This	approach	explores	tiny	part	of	hyperparameter	space	in	

reasonable	amount	of	time.

2.	Random	sampling	and	adequate	search

3.	Implement	coarse	to	fine	search	process

4.	Oscar		tool	implements	complex	algorithms

3

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

Training Deep Neural Nets

Bias and Variance

High bias ====> Underfitting
High Variance =====> Overfitting

Bayes error is the theoretical lowest error possible on a task, there can be no lower
error rate.

 Human error is the empirical lowest error that a human can perform

Techniques to improve the way neural networks
learn

1. Better initialization of weights

2. Regularization methods

1. L1 regularization

2. L2 regularization

3. Data augmentation - artificial expansion training data

4. Early stopping

Training Set Error
(%) 1 15 15 0.5

Train Dev Set
(Validation Set)

Error (%)
11 16 30 1.0

Remarks High variance High Bias High Bias and
High variance

Low bias and
Low Variance

Solution
strategies

More data Bigger network

Regiularization Train longer

Reduce number of
features

1

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
3. Heuristics to choose good hyper parameters

4. Better cost function - cross entropy

Problems while training a Deep NeuralNets

	 1. Vanishing & Exploding Gradient Descent Problem

	 2. Extreme slow training in such a large network

	 3. Millions of parameters risk in overfitting the training set.

VANISHING/EXPLODING GRADIENT DESCENTS PROBLEM

Gradient is calculated using Backpropagation.

- Gradient of the loss with respect to weights

In a network of n hidden layers, n derivatives will be multiplied together. If the

derivatives are large then the gradient will increase exponentially as we propagate down

the model until they eventually explode, and this is what we call the problem

of exploding gradient. Alternatively, if the derivatives are small then the gradient

will decrease exponentially as we propagate through the model until it eventually

vanishes, and this is the vanishing gradient problem.

Because of this problem, deep neural networks were abandoned in early 2000s.

Vanishing Gradient Problem

	 Gradients are calculated from back propagation - unstable gradients

	 Gradients are used to update the weights

	 As more layers using certain activation functions are added to neural networks,

the gradients of the loss function approaches zero, making the network hard to train.

When n hidden layers use an activation like the sigmoid function, n small derivatives

are multiplied together. Thus, the gradient decreases exponentially as we propagate

down to the initial layers. Sometimes the gradient with respect to weights in earlier

layers of the network becomes really small, like vanishingly small. Hence, vanishing

2

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

gradient.

Derivative of sigmoid ranges from 0 to 0.25

3

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

Watch the following video

h t t p s : / / w w w . b i n g . c o m / v i d e o s / s e a r c h ?
q=vanishing+gradient+problem&&view=detail&mid=0BCF23AEFC54B82
68DE40BCF23AEFC54B8268DE4&&FORM=VRDGAR&ru=%2Fvideos%2
Fsearch%3Fq%3Dvanishing%2Bgradient%2Bproblem%26FORM%3DHDR
SC3

Solutions:

1. Weight Initialization- Xavier and He Initialization

2. Nonsaturating activating functions

3. Batch Normalization

4. Gradient Clipping

4

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

1. Weight Initialization

https://deeplizard.com/learn/video/8krd5qKVw-Q

Random distribution of weights. This random values have a normal distribution
with mean ‘0’ and standard deviation ‘1’.

Impact of this random initialization:

Let there are 250 input nodes with values assigned as ‘1’. Weights are randomly

initialized.

5

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

As number of nodes increase, std deviation takes significantly larger values compared to

1.Variance for each of our random numbers is 1, so the variance of z is the sum of these

250 numbers, is 250. Std deviation of z is 15.811.

With this larger standard deviation, the value of z is significantly larger or smaller

than 1.

. When value of z is passed to the activation function, sigmoid, for example, then most

positive inputs, that are significantly larger than 1 will be mapped to the value 1

and most negative inputs will be mapped to 0. So when SGD updates weights to

influence the activation output,it will barely make smaller change in the output of

activation function.

Thus, the network's ability to learn becomes hindered, and training is stuck running in

this slow and inefficient state.

Xavier / Glorot Initialization

Shrink the variance of the weights, and this will shrink the variance of the weighted

sum.

6

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

For RELU activation function,

He Initialization

By default fully_connected() function uses Xavier initialization with uniform

distribution. This can be changed to He initialization by using

variance_scaling_initializer().

7

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
2. Nonsaturating Activation functions

ReLU(z)=max(0,z)

ReLU activation function is fast to compute and does not saturate for positive values.

But it suffers from the problem of dying ReLUs during training.

When the weights are updated and the weighted sum of the neurons inputs is negative,

the neuron outputs a ‘0’. In such a case, neurons may not comeback to life as the

gradient of the ReLU function is ‘0’.

To solve the problem of dying ReLUs, Leaky ReLU is introduced and is defined as

LeakyReLU(z) = max(⍺z , z) where hyper parameter ⍺ = slope of the function when z<0

(how much the function leaks).

⍺ = 0.01 - small leak . Leaky ReLUs never die.

⍺ = 0.2 - huge leak - results in better performance than small leak

Randomized Leaky ReLU - ⍺ is random value in given range - acts as a regularizer.

Parametric Leaky ReLU - ⍺ learns during training- performs well on large image

datasets, but overfits on smaller datasets.

8

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
Exponential Linear Unit, proposed by Djork Arne Clevert outperformed all the ReLU

variants and reduced the training time .

Differences of ELU with ReLU

1. ELU takes negative values when z<0.

2. It has non zero gradient when z<0.

3. Function is smooth, even at z=0.

4. It is slower to compute ,but compensated due to fast convergence rate.

Set activation_fn=tf.nn.elu in fully_connected() method.

3. Batch Normalization

https://deeplizard.com/learn/video/dXB-KQYkzNU

Regular Normalization

A typical normalization process consists of scaling numerical data on a scale from zero

to one, and a typical standardization process consists of subtracting the mean of the

dataset from each data point, and then dividing that difference by the data set's

9

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
standard deviation.This forces the standardized data to take on a mean of zero and a

standard deviation of one.

The larger data points in the non-normalized data sets can cause instability in neural

networks because large inputs cascade down through the layers in the network, causing

imbalanced gradients, and which results in exploding gradient problem. Also non

normalized data decreases the training speed.

If one weight is larger than other weights, this causes the corresponding neuron to

output large values and this cascading causes instability.

In Batch normalization, after normalizing the output from the activation function, batch

norm multiplies this normalized output by some arbitrary parameter and then adds

another arbitrary parameter to this resulting product.

Batch Normalization process

b, g, mean, std are hyper parameters that are learned for each batch normalized layer.

Advantages:

1. Reduces vanishing gradient problem.

2. Less sensitive to weight initialization.

3. Larger learning rates can be used, speeding up the learning process.

4. Improves accuracy and also acts like a regularizer.

But this process adds complexity to the model and makes slower predictions.

Refer to Jupiter notebook for implementation.

4. Gradient Clipping

Gradient clipping solves exploding gradients problem.

10

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
Idea : If the gradient gets too large, we rescale it to keep it small.

If ‖g‖ ≥ c, then

g ↤ c · g/‖g‖

where c is a threshold (hyperparameter), g is the gradient, and ‖g‖ is the norm of g.

Since g/‖g‖ is a unit vector, after rescaling the new g will have norm c. If ‖g‖ < c, then

no rescaling.

TensorFlow Implementation

REUSING PRETRAINED NETWORKS

To speed up training the neural networks, pertained models can be used
during implementation in the following ways

1. Reusing Pretrained Layers

2. Unsupervised Pretraining

3. Pretraining on an auxiliary task

1. Reusing Pretrained Layers

Not a good idea to build a DNN from scratch.

Find an existing DNN which does a similar task and then reuse the lower layers of the

network — transfer learning.

11

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
Idea : To build a DNN for taskB, use the lower layers of an existing DNN for a similar

task A. This is called transfer learning.

Ex : Task A - A DNN is already trained to classify pictures into 100 different categories.

Task B - To train a DNN to classify specific types of vehicles.

So reuse parts of first network(TaskA)

Reusing Pretrained layers

Transfer learning performs better when the inputs have similar low level features.

Upper hidden layers of the original model are less likely to be useful than the lower

layers.

12

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
Find the right number flayers to reuse.

Freeze all the reused hidden layers first and see that Gradient descent does not modify

the weights in these layers. Check the performance.

Try unfreezing 1 or 2 top hidden layers and let back propagation tweak them and check

the performance.

Depending on the amount of trains data, try dropping the top hidden layers and freezing

the layers and check the performance. Iterate this process till performance improves.

Refer to Jupiter notebook for implementation

2. Unsupervised pretraining

If a complex task consists of much unlabeled training data, then perform unsupervised

pretraining, layer by layer, starting with the lowest layer using unsupervised feature

detector algorithm like Restricted Boltzmann Machines(RBM) or auto encoders.

Each layer is trained on the output of previously trained layers. Once all layers are

trained, fine tune the network using supervised learning i.e Backpropagation.

Unsupervised pertaining with Autoencoders or GANs(Generative Adversial Networks) is

preferable for a complex task with plenty of unlabeled training data and when no similar

13

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
model is available to reuse.

3.Pretraining on an Auxiliary Task

Train first neural network on an auxiliary task for which you can obtain labeled training

data. Reuse the lower layers of this network for the actual task. The first network will

learn feature detectors that are likely to be reusable by second network.

Ex To build a system to recognize faces and if you have smaller labeled data, then collect

random pics from internet and detect whether two different pictures feature the same

person.

For natural language processing (NLP) applications, you can download a corpus of

millions of text documents and automatically generate labeled data from it. For

example, you could randomly mask out some words and train a model to predict what

14

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
the missing words are (e.g., it should predict that the missing word in the sentence

“What ___ you saying?” is probably “are” or “were”).

FASTER OPTIMIZERS

Watch the following videos

https://www.coursera.org/lecture/deep-learning-reinforcement-learning/optimizers-

TuZPu

Faster Optimizers improve the training speed of large deep neural networks.

Popular ones are

• Momentum Optimization

• Nesterov Accelerated Gradient

• Ada Grad

• RMSProp

15

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

• Adam Optimization

1.Momentum Optimization

Idea : Imagine a bowling ball rolling down a gentle slope on a smooth surface:It will

start slowly, but will quickly pickup momentum until it reaches terminal velocity.

Momentum algorithm

Gradient is used as an algorithm.

β hyper parameter called momentum is set between 0(high friction) and 1(no

friction).Momentum is set to 0.9.If β is 0.9, terminal velocity is ten times the gradient

times of the learning rate. Momentum optimization is 10 times that of gradient Descent.

Due to the momentum, the optimizer may overshoot a bit, then come back,
overshoot again, and oscillate like this many times before stabilizing at the
minimum.

In Keras,

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9)

2. Nesterov Accelerated Gradient

Proposed by Yurii Nesterov in1983.

Faster than momentum optimization.

Idea : Measure the gradient of the cost function not at the local position θ,but slightly

ahead in the direction of momentum. Control overshooting by looking ahead at θ+βm

16

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

In Keras,

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9, nesterov=True)

3. AdaGrad

Idea : Scales down the gradient vector along the steepest dimension. Scale the update

for each weight separately.

1. Update frequently-updated weights less.

2. Keep running sum of previous updates.

17

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
3. Divide new updates by factor of previous sum.

ϵ is a soothing term to avoid division by zero.

AdaGrad algorithm inefficient to train neural networks for simpler tasks like Linear

Regression. But for quadratic problems,algorithm ends up stopping too early before

reaching global optimum.

4. RMSProp

This optimizer accumulates the gradients from the most recent iterations rather than

gradients since the beginning of training.

18

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
It uses exponential decay in the first step. The decay rate, β, hyperparameter is set to

0.9, which works well.

In Keras,

optimizer = keras.optimizers.RMSprop(lr=0.001, rho=0.9)

This optimizer works better than Momentum optimizer, Nesterov Accelerated Gradient,

AdaGrad.

5. Adam Optimization

Adam (Adaptive moment estimation) combines Momentum Optimization and

RMSProp. This keeps track of exponentially decaying average of past gradients like

Momentum optimization and average of past squared gradients like RMSProp.

Adam algorithm

Momentum decay hyperparameter β1 is set to0.9.

Scaling decay hyperparameter β2 is set to0.999

ϵ is set to 10-8

η=0.001

19

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
In Keras,

optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999)

Sparse Models

All these optimization algorithms produce dense models(most parameters are non

zero). To build a fast model at runtime, construct a sparse model.

1. Get rid of the tiny weights by setting them to zero.

2. Apply strong l1 regularization during training, as it pushes the optimizer to zero out

as many weights as possible.

3. Apply dual averaging or Follow the Regularised Leader along with with l1

regularization to generate sparse models.

Learning Rate Scheduling

If the learning rate is set too high, training may diverge. If it is too low, training may

eventually to converge to the optimum but takes a long time. If set slightly too high, it

progresses quickly at first, but sendup dancing around the optimum, never settling

down. Ideal learning rate will learn quickly and converge to good solution.

	 Instead of having constant learning rate, start with high learning rate and reduce

it once it stops making fast progress. This way , you can a get a good solution faster than

constant learning rate.

20

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

Following are different learning schedules.

In Keras,

optimizer = keras.optimizers.SGD(lr=0.001, decay=1e-4)

21

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

AVOIDING OVERFITTING THROUGH REGULARIZATION

22

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

23

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

Consider a NN which is overfitting on the training data.

If the regularization coefficient is too high, then some of the weight matrices are nearly

equal to zero.

24

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

1. Early Stopping

A problem with training neural networks is in the choice of the number of training

epochs to use.

Too many epochs can lead to overfitting of the training dataset, while too few may result

in an underfit model. Early stopping is a method that allows you to specify an arbitrary

large number of training epochs and stop training once the model performance stops

improving on a hold out validation dataset.

25

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
This works well in practice, but it performs better when combined with other

regularization techniques.

2. L1 and L2 Regularization

Cost function = Loss (say, binary cross entropy) + Regularization term

A regression model that uses L1 regularization
technique is called Lasso Regression and model
which uses L2 is called Ridge Regression.

The key difference between these two is the penalty
term.

Due to the addition of this regularization term, the values of weight matrices decrease

because it assumes that a neural network with smaller weight matrices leads to simpler

models. Therefore, it will also reduce overfitting to quite an extent.

L1 Regularization

L2 Regularization

For simple linear models, use l2 regularization to constrain
a neural network’s connection weights.

26

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

For a sparse model , use l1 regularization(with many
weights equal to 0).

Here is how to apply l2 regularization to a Keras layer’s
connection weights, using a regularization factor of 0.01

similarly for l1 regularizer, use keras.regularizers.l1() and for

both l1 and l2 regularizer, use eras.regularizers.l1_l2().

As same regularizer, same activation function, same initialization strategy is used in all

the respective layers, above code appears repetitively.

So to avoid this, use functors.partial() function

27

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
3. Dropout

This is a popular regularization technique which boosts accuracy by 1-2%.

At every training step, each neuron (including input neurons but excluding output

neurons) has a probability p of being temporarily dropped out at this training step and

may be active in the next step. This hyper parameter p is called dropout rate and is set

closer to 20-30% in RNNs and 40-50% in CNNs.

 After training neurons aren’t dropped any more.

The following code implements dropout regularization for 3-layer neural network.

28

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

If the models overfitting, increase dropout rate.

If the model is underfitting, decrease dropout rate.

Dropout may significantly slowdown the convergence but it will give better results when

tuned properly.

Monte Carlo Dropout

4. Max-Norm Regularization

Max norm regularization constrains clipping each neuron's weight vector after each

training step to ensure that its norm never exceeds some threshold r.

Reducing r, increases the amount of regularization and reduces overfitting.

It alleviates vanishing/exploding gradients problem.

TensorFlow does not have off the shelf max-norm regularizer.

29

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

30

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021

5. Data Augmentation

Data Augmentation consists of generating new realistic training instances from existing

ones, artificially boosting the size of training set. This reduces overfitting.

31

Training Deep Neural Nets UNIT -III Sunday, May 2, 2021
Ex , if you want to classify pictures of mushrooms, you may slightly shift, rotate, resize

every picture in the training set by various amounts and add resulting pictures to the

training set. Thenthe resulting model becomes more tolerant to the size, orientation,

position of mushrooms in the pictures.

 It is preferable to generate new training instances on the fly during training so as to

save storage space and network bandwidth.

TensorFlow offers several image manipulation operations like transposing, rotating,

resizing, flipping, cropping, adjusting brightness, contrast, saturation, hue.

Steps involved in training a DNN

1. Randomly seed weights

2. Fetch a batch data

3. Forward pass

4. Compute Cost

5. Backward pass

6. Update weights

32

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

Convolutional Neural Networks
Watch the following video

Convolutional Neural Network(CNN)

	 Also called Convolutional Networks, are a special kind of neural networks, that has a
known grid like topology.

Ex: 1. Timeseries data —1 D grid with samples at regular time intervals

 2. Image data - 2D grid of pixels

	 This CNN employs a mathematical, specialized kind of linear operation called
convolution. CNNs are neural networks that use convolution operation in place of general
matrix multiplication in at least one of their layers. CNNs emerged from the study of humans
visual cortex. CNNs are successful in visual perception, voice recognition, Natural Language
Processing tasks, etc.

	 CNNs use three basic ideas.

	 	 1. Local receptive field

	 	 2.Shared weights

	 	 3.Pooling

1 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

Architecture of Visual Cortex

	 Many neurons in the visual cortex have a small local receptive field. Local

receptive fields of five neurons are indicated by five dashed circles. Receptive fields of

different neurons may overlap and together they tile the whole visual field. Some

neurons react to images of only horizontal lines, while others to vertical lines or other

orientations.Some neurons may have larger receptive fields and react to more complex

patterns that are combinations of lower level patterns. So higher level neurons are based

on the outputs of the neighboring lower level neurons.

Why Convolution?

2 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

Layers in CNN

1. Convolutional Layer

2. ActivationLayer

3. Pooling Layer

4. Fully Connected Layer

1. Convolutional Layer

For the hand written digit classification on MNIST dataset,

in a fully connected network ,input layer is represented as 28x28=784 vertical line of

input neurons where as in Convolutional net, it is represented as 28x28 square of

neurons, whose values correspond to pixels intensities. Each neuron in the first hidden

layer will be connected to only a small region of the input neurons. Ex a 5x5 region

corresponding to 25 pixels. Region in the input image is called the local receptive field

for the hidden neurons.

3 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

4 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

Convolutional layers are the major building blocks used in convolutional neural

networks.

Convolution Operation

Convolution is an operation on two functions of real valued arguments.

Ex Suppose we are tracking the location of a spaceship with laser sensor. x(t) is the

output of the laser sensor which specifies the position of spaceship at time t. Suppose

the laser sensor is noisy. To get less noisy estimate space ship position , we

average .together several measurements. Let w(a) be weighing function with a as the age

5 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021
of measurement.

The first argument, x is called input and the second argument, w is called the kernel

filter. The output is called feature map

A convolution is the simple application of a filter to an input that results in an

activation. Repeated application of the same filter to an input results in a map of

activations called a feature map, indicating the locations and strength of a detected

6 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021
feature in an input, such as an image.

Each connection learns a weight and the hidden neuron learns overall bias. Each

hidden neuron is trying to analyze its own local receptive field.

Slide the local receptive field across the entire image.

7 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

The distance between two consecutive receptive fields is called the stride.

8 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

Shared weights and biases

If the hidden neuron has a bias and a 5x5 weights connected to its local receptive field,

then the output of j, k-th hidden neuron is

9 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

where 𝝈 is the neural activation function, b is the shared value for the bias and

 ax,y is the input activation at position x, y.

All the neurons in the first hidden layer detect exactly the same feature just at different

locations in the input image. Weights and bias of a hidden neuron such that they pickup

vertical edge. Map from the input layer to the hidden layer is called feature map.

Weights and bias defining the feature map is called shared weights and biases. Shared

weights and biases is called filter or kernel. Big advantage with sharing weights and

biases is that it greatly reduces the number of parameters involved in a convolutional

network.

Convolutional layer consists of several different feature maps.

10 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021
Stacking multiple feature maps

With in one feature map, all neurons share same weights and bias term, but different

feature maps may share different parameters.

TensorFlow Implementation

11 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

12 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021
Memory Requirements

2. Activation Layer
Only non linear activation functions are used for learning.

A1*(A2*X) = (A1*A2)*X = A*X

reLU/Leaky reLU can be used as activation function.

Leaky reLU solves dying reLU problem.

reLU(MaxPool(Conv(M))) = MaxPool(reLU(Conv(M)))

3. Pooling Layer
Down sampling features to reduce computational load, memory usage and number of

parameters.

Two hyper parameters

	 	 1. Dimension of spatial extent

	 	 2. Stride

Pooling layer has no weights. But it uses an aggregation function of max or mean.

 A common pooling layer uses 2x2 maxpool filter with stride 2.

13 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

Depth remains the same after pooling layer. Pooling reduces the chance of overfitting as

there are less parameters.

For the MNIST dataset, after the convolutional layer

Number of features are reduced to 25% of the original number.

14 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021
TensorFlow implementation of pooling layer with a 2x2 kernel, stride of 2 and no

padding.

ksize argument represents batch size , height, width, channels.

4. Fully Connected Layer
This layer is used to learn non-linear combination of features while convolutional layer

provides meaningful, low-dimensional, invariant feature space.

Pooling output is a 3D feature map

FC input is a 1D feature vector.

This conversion is done through flattening.

15 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

CNN for MNIST dataset to recognize hand written digits

16 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

17 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

https://www.coursera.org/lecture/intro-practical-deep-learning/convolutional-neural-networks-
iOxAv

CNN Architectures
Typical CNN architectures stack a few convolutional layers followed by a pooling layer, again
convolution layers and then pooling layer and so on. Image gets smaller and smaller as it
progresses through the network but it gets deeper and deeper with more feature maps.Top of
the stack is a regular feed forward neural network in which the output layer is usually a softmax
layer that outputs class probabilities.

1. LeNet-5

2. AlexNet

3.GoogLeNet

18 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021
4. ResNet

LeNet-5
Created by Yann LeCun in 1998.

Used for hand written digit recognition(MNIST dataset)

19 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

AlexNet
AlexNet CNN architecture won 2012 ILSVRC challenge

ILSVRC-ImageNet Large Scale Visual Recognition Challenge

ImageNet is a dataset of over 15 million labeled high-resolution images belonging to

roughly 22,000 categories. Achieved 17% top-5 error rate.

Developed Alex Krizhevsky.

It was the first to stack convolutional layers directly on one another instead of pooling layer on
top of each convolutional layer.

Two regularization techniques are used to reduce overfitting.

1. Dropout with 50% dropout rate to the output of layers F8 and F9

2. Data Augmentation

It used Local Response Normalization.

20 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

GoogLeNet
Developed by Christian Szegedy.

ILSVRC 2014 classification winner

6.7% top5 error

Efficient Inception Module

12x less parameters thanAlexNet

Architecture of an Inception Module

21 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021
Notation 3x3 + 1(S) means that the layer uses 3x3 filter and a stride of 1.with the SAME
padding.

Different kernel sizes (1x1,3x3,5x5) are used in second convolutional layer allows to capture
patterns at different scales.

As all the convolutional and maxpool layers uses a stride of 1, the outputs can be
concatenated along the depth dimension in the final depth concat layer.

Can be implemented using concat() functioning TensorFlow.

22 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

23 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

ResNet

Very deep network using residual connections

152 layer model for ImageNet

ILSVRC 2015 challenge winner

3.57% top 5 error

Introduces skip connections and performs heavy batch normalization.

Idea : Deeper network may be made from a shallow network by copying weights from shallow
network and setting other layers in the deeper network to be identity mapping.

This formulation indicates that deeper model should not produce higher training error than the
shallow counterpart.

24 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

25 Dr.D.Kavitha

Convolutional Neural Networks UNIT IV Saturday, May 15, 2021

https://towardsdatascience.com/review-hikvision-1st-runner-up-in-ilsvrc-2016-object-
detection-1f0a42cda767

26 Dr.D.Kavitha

